Client-Side Patching against Backdoor Attacks in Federated Learning
- URL: http://arxiv.org/abs/2412.10605v2
- Date: Fri, 20 Dec 2024 09:59:28 GMT
- Title: Client-Side Patching against Backdoor Attacks in Federated Learning
- Authors: Borja Molina-Coronado,
- Abstract summary: Federated learning is vulnerable to backdoor attacks launched by malicious participants.
We propose a novel defense mechanism for federated learning systems designed to mitigate backdoor attacks on the clients-side.
Our approach leverages adversarial learning techniques and model patching to neutralize the impact of backdoor attacks.
- Score: 0.0
- License:
- Abstract: Federated learning is a versatile framework for training models in decentralized environments. However, the trust placed in clients makes federated learning vulnerable to backdoor attacks launched by malicious participants. While many defenses have been proposed, they often fail short when facing heterogeneous data distributions among participating clients. In this paper, we propose a novel defense mechanism for federated learning systems designed to mitigate backdoor attacks on the clients-side. Our approach leverages adversarial learning techniques and model patching to neutralize the impact of backdoor attacks. Through extensive experiments on the MNIST and Fashion-MNIST datasets, we demonstrate that our defense effectively reduces backdoor accuracy, outperforming existing state-of-the-art defenses, such as LFighter, FLAME, and RoseAgg, in i.i.d. and non-i.i.d. scenarios, while maintaining competitive or superior accuracy on clean data.
Related papers
- Efficient Backdoor Defense in Multimodal Contrastive Learning: A Token-Level Unlearning Method for Mitigating Threats [52.94388672185062]
We propose an efficient defense mechanism against backdoor threats using a concept known as machine unlearning.
This entails strategically creating a small set of poisoned samples to aid the model's rapid unlearning of backdoor vulnerabilities.
In the backdoor unlearning process, we present a novel token-based portion unlearning training regime.
arXiv Detail & Related papers (2024-09-29T02:55:38Z) - Robust Federated Learning Mitigates Client-side Training Data Distribution Inference Attacks [48.70867241987739]
InferGuard is a novel Byzantine-robust aggregation rule aimed at defending against client-side training data distribution inference attacks.
The results of our experiments indicate that our defense mechanism is highly effective in protecting against client-side training data distribution inference attacks.
arXiv Detail & Related papers (2024-03-05T17:41:35Z) - FedDefender: Client-Side Attack-Tolerant Federated Learning [60.576073964874]
Federated learning enables learning from decentralized data sources without compromising privacy.
It is vulnerable to model poisoning attacks, where malicious clients interfere with the training process.
We propose a new defense mechanism that focuses on the client-side, called FedDefender, to help benign clients train robust local models.
arXiv Detail & Related papers (2023-07-18T08:00:41Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning (FL) facilitates decentralized machine learning model training, preserving data privacy, lowering communication costs, and boosting model performance through diversified data sources.
FL faces vulnerabilities such as poisoning attacks, undermining model integrity with both untargeted performance degradation and targeted backdoor attacks.
We define a new notion of strong adaptive adversaries, capable of adapting to multiple objectives simultaneously.
MESAS is the first defense robust against strong adaptive adversaries, effective in real-world data scenarios, with an average overhead of just 24.37 seconds.
arXiv Detail & Related papers (2023-06-06T11:44:42Z) - Learning to Backdoor Federated Learning [9.046972927978997]
In a federated learning (FL) system, malicious participants can easily embed backdoors into the aggregated model.
We propose a general reinforcement learning-based backdoor attack framework.
Our framework is both adaptive and flexible and achieves strong attack performance and durability even under state-of-the-art defenses.
arXiv Detail & Related papers (2023-03-06T17:47:04Z) - Backdoor Attacks in Peer-to-Peer Federated Learning [11.235386862864397]
Peer-to-Peer Federated Learning (P2PFL) offer advantages in terms of both privacy and reliability.
We propose new backdoor attacks for P2PFL that leverage structural graph properties to select the malicious nodes, and achieve high attack success.
arXiv Detail & Related papers (2023-01-23T21:49:28Z) - On the Vulnerability of Backdoor Defenses for Federated Learning [8.345632941376673]
Federated Learning (FL) is a popular distributed machine learning paradigm that enables jointly training a global model without sharing clients' data.
In this paper, we study whether the current defense mechanisms truly neutralize the backdoor threats from federated learning.
We propose a new federated backdoor attack method for possible countermeasures.
arXiv Detail & Related papers (2023-01-19T17:02:02Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
We study how hardening benign clients can affect the global model (and the malicious clients)
We propose a trigger reverse engineering based defense and show that our method can achieve improvement with guarantee robustness.
Our results on eight competing SOTA defense methods show the empirical superiority of our method on both single-shot and continuous FL backdoor attacks.
arXiv Detail & Related papers (2022-10-23T22:24:03Z) - CrowdGuard: Federated Backdoor Detection in Federated Learning [39.58317527488534]
This paper presents a novel defense mechanism, CrowdGuard, that effectively mitigates backdoor attacks in Federated Learning.
CrowdGuard employs a server-located stacked clustering scheme to enhance its resilience to rogue client feedback.
The evaluation results demonstrate that CrowdGuard achieves a 100% True-Positive-Rate and True-Negative-Rate across various scenarios.
arXiv Detail & Related papers (2022-10-14T11:27:49Z) - Towards a Defense against Backdoor Attacks in Continual Federated
Learning [26.536009090970257]
We propose a novel framework for defending against backdoor attacks in the federated continual learning setting.
Our framework trains two models in parallel: a backbone model and a shadow model.
We show experimentally that our framework significantly improves upon existing defenses against backdoor attacks.
arXiv Detail & Related papers (2022-05-24T03:04:21Z) - On the Effectiveness of Adversarial Training against Backdoor Attacks [111.8963365326168]
A backdoored model always predicts a target class in the presence of a predefined trigger pattern.
In general, adversarial training is believed to defend against backdoor attacks.
We propose a hybrid strategy which provides satisfactory robustness across different backdoor attacks.
arXiv Detail & Related papers (2022-02-22T02:24:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.