Global Estimation of Subsurface Eddy Kinetic Energy of Mesoscale Eddies Using a Multiple-input Residual Neural Network
- URL: http://arxiv.org/abs/2412.10656v1
- Date: Sat, 14 Dec 2024 02:54:07 GMT
- Title: Global Estimation of Subsurface Eddy Kinetic Energy of Mesoscale Eddies Using a Multiple-input Residual Neural Network
- Authors: Chenyue Xie, An-Kang Gao, Xiyun Lu,
- Abstract summary: Oceanic eddy kinetic energy (EKE) is a key quantity for measuring the intensity of mesoscale eddies.
Three decades of satellite altimetry observations allow a global assessment of sea surface information.
The subsurface EKE with spatial filter has not been systematically studied due to the sparseness of subsurface observational data.
- Score: 0.0
- License:
- Abstract: Oceanic eddy kinetic energy (EKE) is a key quantity for measuring the intensity of mesoscale eddies and for parameterizing eddy effects in ocean climate models. Three decades of satellite altimetry observations allow a global assessment of sea surface information. However, the subsurface EKE with spatial filter has not been systematically studied due to the sparseness of subsurface observational data. The subsurface EKE can be inferred both theoretically and numerically from sea surface observations but is limited by the issue of decreasing correlation with sea surface variables as depth increases. In this work, inspired by the Taylor-series expansion of subsurface EKE, a multiple-input neural network approach is proposed to reconstruct the subsurface monthly mean EKE from sea surface variables and subsurface climatological variables (e.g., horizontal filtered velocity gradients). Four neural networks are trained on a high-resolution global ocean reanalysis dataset, namely, surface-input fully connected neural network model (FCNN), surface-input Residual neural network model (ResNet), multiple-input fully connected neural network model (MI-FCNN), and multiple-input residual neural network model (MI-ResNet). The proposed MI-FCNN and MI-ResNet models integrate the surface input variables and the vertical profiles of subsurface variables. The MI-ResNet model outperforms the FCNN, ResNet, and MI-FCNN models, and traditional physics-based models in both regional and global reconstruction of subsurface EKE in the upper 2000 m. In addition, the MI-ResNet model performs well for both regional and global observational data based on transfer learning. These findings reveal the potential of the MI-ResNet model for efficient and accurate reconstruction of subsurface oceanic variables.
Related papers
- SurfGNN: A robust surface-based prediction model with interpretability for coactivation maps of spatial and cortical features [17.457540767016223]
Current brain surface-based prediction models often overlook the variability of regional attributes at the cortical feature level.
In this work, we consider the cortical surface mesh as a sparse graph and propose an interpretable prediction model-Surface Graph Neural Network (SurfGNN)
SurfGNN employs topology-sampling learning (TSL) and region-specific learning (RSL) structures to manage individual cortical features at both lower and higher scales of the surface mesh.
arXiv Detail & Related papers (2024-11-05T08:39:53Z) - Toward Routing River Water in Land Surface Models with Recurrent Neural Networks [0.0]
We study the performance of recurrent neural networks (RNNs) for river routing in land surface models (LSMs)
Instead of observed precipitation, the LSM-RNN uses instantaneous runoff calculated from physics-based models as an input.
We train the model with data from river basins spanning the globe and test it using historical streamflow measurements.
arXiv Detail & Related papers (2024-04-22T14:21:37Z) - Continual Learning of Range-Dependent Transmission Loss for Underwater Acoustic using Conditional Convolutional Neural Net [0.0]
This research aims to improve the accuracy of deep-learning models for predicting underwater radiated noise in far-field scenarios.
We propose a novel range-conditional convolutional neural network that incorporates ocean bathymetry data into the input.
Our proposed architecture effectively captures transmission loss over a range-dependent, varying bathymetry profile.
arXiv Detail & Related papers (2024-04-11T19:13:38Z) - A predictive physics-aware hybrid reduced order model for reacting flows [65.73506571113623]
A new hybrid predictive Reduced Order Model (ROM) is proposed to solve reacting flow problems.
The number of degrees of freedom is reduced from thousands of temporal points to a few POD modes with their corresponding temporal coefficients.
Two different deep learning architectures have been tested to predict the temporal coefficients.
arXiv Detail & Related papers (2023-01-24T08:39:20Z) - Deep Learning Based Cloud Cover Parameterization for ICON [55.49957005291674]
We train NN based cloud cover parameterizations with coarse-grained data based on realistic regional and global ICON simulations.
Globally trained NNs can reproduce sub-grid scale cloud cover of the regional simulation.
We identify an overemphasis on specific humidity and cloud ice as the reason why our column-based NN cannot perfectly generalize from the global to the regional coarse-grained data.
arXiv Detail & Related papers (2021-12-21T16:10:45Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
We focus on uplink cascaded channel estimation, where known and fixed base station combining and RIS phase control matrices are considered for collecting observations.
To boost the estimation performance and reduce the training overhead, the inherent channel sparsity of mmWave channels is leveraged in the deep unfolding method.
It is verified that the proposed deep unfolding network architecture can outperform the least squares (LS) method with a relatively smaller training overhead and online computational complexity.
arXiv Detail & Related papers (2021-07-27T06:57:56Z) - Self-Learning for Received Signal Strength Map Reconstruction with
Neural Architecture Search [63.39818029362661]
We present a model based on Neural Architecture Search (NAS) and self-learning for received signal strength ( RSS) map reconstruction.
The approach first finds an optimal NN architecture and simultaneously train the deduced model over some ground-truth measurements of a given ( RSS) map.
Experimental results show that signal predictions of this second model outperforms non-learning based state-of-the-art techniques and NN models with no architecture search.
arXiv Detail & Related papers (2021-05-17T12:19:22Z) - KNN, An Underestimated Model for Regional Rainfall Forecasting [6.421670116083633]
This paper aims to design an integrated tool by applying various machine learning algorithms.
Deep Neural Network, Wide Neural Network, Deep and Wide Neural Network, Reservoir Computing, Long Short Term Memory, Support Vector Machine, K-Nearest Neighbor for forecasting regional precipitations over different catchments in Upstate New York.
arXiv Detail & Related papers (2021-03-28T22:25:29Z) - Topological obstructions in neural networks learning [67.8848058842671]
We study global properties of the loss gradient function flow.
We use topological data analysis of the loss function and its Morse complex to relate local behavior along gradient trajectories with global properties of the loss surface.
arXiv Detail & Related papers (2020-12-31T18:53:25Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z) - Filtering Internal Tides From Wide-Swath Altimeter Data Using
Convolutional Neural Networks [9.541153192112194]
We propose the use of convolutional neural networks (ConvNets) to estimate fields free of internal tide signals.
We also investigate the relevance of considering additional data from other sea surface variables such as sea surface temperature (SST)
arXiv Detail & Related papers (2020-05-03T14:02:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.