Continual Learning of Range-Dependent Transmission Loss for Underwater Acoustic using Conditional Convolutional Neural Net
- URL: http://arxiv.org/abs/2404.08091v1
- Date: Thu, 11 Apr 2024 19:13:38 GMT
- Title: Continual Learning of Range-Dependent Transmission Loss for Underwater Acoustic using Conditional Convolutional Neural Net
- Authors: Indu Kant Deo, Akash Venkateshwaran, Rajeev K. Jaiman,
- Abstract summary: This research aims to improve the accuracy of deep-learning models for predicting underwater radiated noise in far-field scenarios.
We propose a novel range-conditional convolutional neural network that incorporates ocean bathymetry data into the input.
Our proposed architecture effectively captures transmission loss over a range-dependent, varying bathymetry profile.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There is a significant need for precise and reliable forecasting of the far-field noise emanating from shipping vessels. Conventional full-order models based on the Navier-Stokes equations are unsuitable, and sophisticated model reduction methods may be ineffective for accurately predicting far-field noise in environments with seamounts and significant variations in bathymetry. Recent advances in reduced-order models, particularly those based on convolutional and recurrent neural networks, offer a faster and more accurate alternative. These models use convolutional neural networks to reduce data dimensions effectively. However, current deep-learning models face challenges in predicting wave propagation over long periods and for remote locations, often relying on auto-regressive prediction and lacking far-field bathymetry information. This research aims to improve the accuracy of deep-learning models for predicting underwater radiated noise in far-field scenarios. We propose a novel range-conditional convolutional neural network that incorporates ocean bathymetry data into the input. By integrating this architecture into a continual learning framework, we aim to generalize the model for varying bathymetry worldwide. To demonstrate the effectiveness of our approach, we analyze our model on several test cases and a benchmark scenario involving far-field prediction over Dickin's seamount in the Northeast Pacific. Our proposed architecture effectively captures transmission loss over a range-dependent, varying bathymetry profile. This architecture can be integrated into an adaptive management system for underwater radiated noise, providing real-time end-to-end mapping between near-field ship noise sources and received noise at the marine mammal's location.
Related papers
- A Multi-Graph Convolutional Neural Network Model for Short-Term Prediction of Turning Movements at Signalized Intersections [0.6215404942415159]
This study introduces a novel deep learning architecture, referred to as the multigraph convolution neural network (MGCNN) for turning movement prediction at intersections.
The proposed architecture combines a multigraph structure, built to model temporal variations in traffic data, with a spectral convolution operation to support modeling the spatial variations in traffic data over the graphs.
The model's ability to perform short-term predictions over 1, 2, 3, 4, and 5 minutes into the future was evaluated against four baseline state-of-the-art models.
arXiv Detail & Related papers (2024-06-02T05:41:25Z) - Enhancing Traffic Prediction with Learnable Filter Module [42.44466196331814]
Noise in traffic data can be challenging to model due to its nature and can lead to overfitting risks.
We propose a learnable filter module to filter out noise in traffic data adaptively.
We demonstrate that the proposed module is lightweight, easy to integrate with existing models, and can significantly improve traffic prediction performance.
arXiv Detail & Related papers (2023-10-24T09:16:13Z) - Deep Learning for Day Forecasts from Sparse Observations [60.041805328514876]
Deep neural networks offer an alternative paradigm for modeling weather conditions.
MetNet-3 learns from both dense and sparse data sensors and makes predictions up to 24 hours ahead for precipitation, wind, temperature and dew point.
MetNet-3 has a high temporal and spatial resolution, respectively, up to 2 minutes and 1 km as well as a low operational latency.
arXiv Detail & Related papers (2023-06-06T07:07:54Z) - Machine learning for phase-resolved reconstruction of nonlinear ocean
wave surface elevations from sparse remote sensing data [37.69303106863453]
We propose a novel approach for phase-resolved wave surface reconstruction using neural networks.
Our approach utilizes synthetic yet highly realistic training data on uniform one-dimensional grids.
arXiv Detail & Related papers (2023-05-18T12:30:26Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
We compare different deep learning models for prediction of water depth at high spatial resolution.
Deep learning models are trained to reproduce the data simulated by the CADDIES cellular-automata flood model.
Our results show that the deep learning models present in general lower errors compared to the other methods.
arXiv Detail & Related papers (2023-02-20T16:08:54Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - Artificial Intelligence Hybrid Deep Learning Model for Groundwater Level
Prediction Using MLP-ADAM [0.0]
In this paper, a multi-layer perceptron is applied to simulate groundwater level.
The adaptive moment estimation algorithm is also used to this matter.
Results indicate that deep learning algorithms can demonstrate a high accuracy prediction.
arXiv Detail & Related papers (2021-07-29T10:11:45Z) - Churn Reduction via Distillation [54.5952282395487]
We show an equivalence between training with distillation using the base model as the teacher and training with an explicit constraint on the predictive churn.
We then show that distillation performs strongly for low churn training against a number of recent baselines.
arXiv Detail & Related papers (2021-06-04T18:03:31Z) - Hybrid Physics and Deep Learning Model for Interpretable Vehicle State
Prediction [75.1213178617367]
We propose a hybrid approach combining deep learning and physical motion models.
We achieve interpretability by restricting the output range of the deep neural network as part of the hybrid model.
The results show that our hybrid model can improve model interpretability with no decrease in accuracy compared to existing deep learning approaches.
arXiv Detail & Related papers (2021-03-11T15:21:08Z) - A Bayesian Perspective on Training Speed and Model Selection [51.15664724311443]
We show that a measure of a model's training speed can be used to estimate its marginal likelihood.
We verify our results in model selection tasks for linear models and for the infinite-width limit of deep neural networks.
Our results suggest a promising new direction towards explaining why neural networks trained with gradient descent are biased towards functions that generalize well.
arXiv Detail & Related papers (2020-10-27T17:56:14Z) - Inferring, Predicting, and Denoising Causal Wave Dynamics [3.9407250051441403]
The DISTributed Artificial neural Network Architecture (DISTANA) is a generative, recurrent graph convolution neural network.
We show that DISTANA is very well-suited to denoise data streams, given that re-occurring patterns are observed.
It produces stable and accurate closed-loop predictions even over hundreds of time steps.
arXiv Detail & Related papers (2020-09-19T08:33:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.