Movie Recommendation using Web Crawling
- URL: http://arxiv.org/abs/2412.10714v1
- Date: Sat, 14 Dec 2024 06:56:46 GMT
- Title: Movie Recommendation using Web Crawling
- Authors: Pronit Raj, Chandrashekhar Kumar, Harshit Shekhar, Amit Kumar, Kritibas Paul, Debasish Jana,
- Abstract summary: This paper explores integrating real time data from popular movie websites using advanced HTML scraping techniques and APIs.
It also incorporates a recommendation system trained on a static Kaggle dataset, enhancing the relevance and freshness of suggestions.
- Score: 1.821917087370735
- License:
- Abstract: In today's digital world, streaming platforms offer a vast array of movies, making it hard for users to find content matching their preferences. This paper explores integrating real time data from popular movie websites using advanced HTML scraping techniques and APIs. It also incorporates a recommendation system trained on a static Kaggle dataset, enhancing the relevance and freshness of suggestions. By combining content based filtering, collaborative filtering, and a hybrid model, we create a system that utilizes both historical and real time data for more personalized suggestions. Our methodology shows that incorporating dynamic data not only boosts user satisfaction but also aligns recommendations with current viewing trends.
Related papers
- Video Decomposition Prior: A Methodology to Decompose Videos into Layers [74.36790196133505]
This paper introduces a novel video decomposition prior VDP' framework which derives inspiration from professional video editing practices.
VDP framework decomposes a video sequence into a set of multiple RGB layers and associated opacity levels.
We address tasks such as video object segmentation, dehazing, and relighting.
arXiv Detail & Related papers (2024-12-06T10:35:45Z) - Whats in a Video: Factorized Autoregressive Decoding for Online Dense Video Captioning [71.94122309290537]
We propose an efficient, online approach to generate dense captions for videos.
Our model uses a novel autoregressive factorized decoding architecture.
Our approach shows excellent performance compared to both offline and online methods, and uses 20% less compute.
arXiv Detail & Related papers (2024-11-22T02:46:44Z) - Monolithic Hybrid Recommender System for Suggesting Relevant Movies [0.0]
We consider two approaches of collaborative filtering, by using sequences of watched movies and considering the related movies rating.
Various weights would be set based on use cases.
Discussion was made regarding the literature and methodological approach to solve the problem.
arXiv Detail & Related papers (2024-11-16T20:41:17Z) - Language-Model Prior Overcomes Cold-Start Items [14.370472820496802]
The growth ofRecSys is driven by digitization and the need for personalized content in areas such as e-commerce and video streaming.
Existing solutions for the cold-start problem, such as content-based recommenders and hybrid methods, leverage item metadata to determine item similarities.
This paper introduces a novel approach for cold-start item recommendation that utilizes the language model (LM) to estimate item similarities.
arXiv Detail & Related papers (2024-11-13T22:45:52Z) - Network-Based Video Recommendation Using Viewing Patterns and Modularity Analysis: An Integrated Framework [1.2289361708127877]
This research introduces a novel approach by combining implicit user data, such as viewing percentages, with social network analysis to enhance personalization in VOD platforms.
The system was evaluated on a documentary-focused VOD platform with 328 users over four months.
Results showed significant improvements: a 63% increase in click-through rate (CTR), a 24% increase in view completion rate, and a 17% improvement in user satisfaction.
arXiv Detail & Related papers (2023-08-24T12:45:02Z) - Mitigating Representation Bias in Action Recognition: Algorithms and
Benchmarks [76.35271072704384]
Deep learning models perform poorly when applied to videos with rare scenes or objects.
We tackle this problem from two different angles: algorithm and dataset.
We show that the debiased representation can generalize better when transferred to other datasets and tasks.
arXiv Detail & Related papers (2022-09-20T00:30:35Z) - A Feature-space Multimodal Data Augmentation Technique for Text-video
Retrieval [16.548016892117083]
Text-video retrieval methods have received increased attention over the past few years.
Data augmentation techniques were introduced to increase the performance on unseen test examples.
We propose a multimodal data augmentation technique which works in the feature space and creates new videos and captions by mixing semantically similar samples.
arXiv Detail & Related papers (2022-08-03T14:05:20Z) - HighlightMe: Detecting Highlights from Human-Centric Videos [52.84233165201391]
We present a domain- and user-preference-agnostic approach to detect highlightable excerpts from human-centric videos.
We use an autoencoder network equipped with spatial-temporal graph convolutions to detect human activities and interactions.
We observe a 4-12% improvement in the mean average precision of matching the human-annotated highlights over state-of-the-art methods.
arXiv Detail & Related papers (2021-10-05T01:18:15Z) - VPN: Video Provenance Network for Robust Content Attribution [72.12494245048504]
We present VPN - a content attribution method for recovering provenance information from videos shared online.
We learn a robust search embedding for matching such video, using full-length or truncated video queries.
Once matched against a trusted database of video clips, associated information on the provenance of the clip is presented to the user.
arXiv Detail & Related papers (2021-09-21T09:07:05Z) - Automatic Curation of Large-Scale Datasets for Audio-Visual
Representation Learning [62.47593143542552]
We describe a subset optimization approach for automatic dataset curation.
We demonstrate that our approach finds videos with high audio-visual correspondence and show that self-supervised models trained on our data, despite being automatically constructed, achieve similar downstream performances to existing video datasets with similar scales.
arXiv Detail & Related papers (2021-01-26T14:27:47Z) - Echo Chambers in Collaborative Filtering Based Recommendation Systems [1.5140493624413542]
We simulate the recommendations given by collaborative filtering algorithms on users in the MovieLens data set.
We find that prolonged exposure to system-generated recommendations substantially decreases content diversity.
Our work suggests that once these echo-chambers have been established, it is difficult for an individual user to break out by manipulating solely their own rating vector.
arXiv Detail & Related papers (2020-11-08T02:35:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.