OmniHD-Scenes: A Next-Generation Multimodal Dataset for Autonomous Driving
- URL: http://arxiv.org/abs/2412.10734v4
- Date: Thu, 23 Jan 2025 11:20:19 GMT
- Title: OmniHD-Scenes: A Next-Generation Multimodal Dataset for Autonomous Driving
- Authors: Lianqing Zheng, Long Yang, Qunshu Lin, Wenjin Ai, Minghao Liu, Shouyi Lu, Jianan Liu, Hongze Ren, Jingyue Mo, Xiaokai Bai, Jie Bai, Zhixiong Ma, Xichan Zhu,
- Abstract summary: High-quality datasets are crucial for the development of effective data-driven autonomous driving solutions.
We present OmniHD-Scenes, a large-scale multimodal dataset that provides comprehensive omnidirectional high-definition data.
The dataset comprises 1501 clips, each approximately 30-s long, totaling more than 450K synchronized frames and more than 5.85 million synchronized sensor data points.
- Score: 6.426389871517664
- License:
- Abstract: The rapid advancement of deep learning has intensified the need for comprehensive data for use by autonomous driving algorithms. High-quality datasets are crucial for the development of effective data-driven autonomous driving solutions. Next-generation autonomous driving datasets must be multimodal, incorporating data from advanced sensors that feature extensive data coverage, detailed annotations, and diverse scene representation. To address this need, we present OmniHD-Scenes, a large-scale multimodal dataset that provides comprehensive omnidirectional high-definition data. The OmniHD-Scenes dataset combines data from 128-beam LiDAR, six cameras, and six 4D imaging radar systems to achieve full environmental perception. The dataset comprises 1501 clips, each approximately 30-s long, totaling more than 450K synchronized frames and more than 5.85 million synchronized sensor data points. We also propose a novel 4D annotation pipeline. To date, we have annotated 200 clips with more than 514K precise 3D bounding boxes. These clips also include semantic segmentation annotations for static scene elements. Additionally, we introduce a novel automated pipeline for generation of the dense occupancy ground truth, which effectively leverages information from non-key frames. Alongside the proposed dataset, we establish comprehensive evaluation metrics, baseline models, and benchmarks for 3D detection and semantic occupancy prediction. These benchmarks utilize surround-view cameras and 4D imaging radar to explore cost-effective sensor solutions for autonomous driving applications. Extensive experiments demonstrate the effectiveness of our low-cost sensor configuration and its robustness under adverse conditions. Data will be released at https://www.2077ai.com/OmniHD-Scenes.
Related papers
- RoboSense: Large-scale Dataset and Benchmark for Egocentric Robot Perception and Navigation in Crowded and Unstructured Environments [62.5830455357187]
We setup an egocentric multi-sensor data collection platform based on 3 main types of sensors (Camera, LiDAR and Fisheye)
A large-scale multimodal dataset is constructed, named RoboSense, to facilitate egocentric robot perception.
arXiv Detail & Related papers (2024-08-28T03:17:40Z) - SCaRL- A Synthetic Multi-Modal Dataset for Autonomous Driving [0.0]
We present a novel synthetically generated multi-modal dataset, SCaRL, to enable the training and validation of autonomous driving solutions.
SCaRL is a large dataset based on the CARLA Simulator, which provides data for diverse, dynamic scenarios and traffic conditions.
arXiv Detail & Related papers (2024-05-27T10:31:26Z) - TUMTraf V2X Cooperative Perception Dataset [20.907021313266128]
We propose CoopDet3D, a cooperative multi-modal fusion model, and TUMTraf-V2X, a perception dataset.
Our dataset contains 2,000 labeled point clouds and 5,000 labeled images from five roadside and four onboard sensors.
We show that our CoopDet3D camera-LiDAR fusion model achieves an increase of +14.36 3D mAP compared to a vehicle camera-LiDAR fusion model.
arXiv Detail & Related papers (2024-03-02T21:29:04Z) - Multi-Modal Dataset Acquisition for Photometrically Challenging Object [56.30027922063559]
This paper addresses the limitations of current datasets for 3D vision tasks in terms of accuracy, size, realism, and suitable imaging modalities for photometrically challenging objects.
We propose a novel annotation and acquisition pipeline that enhances existing 3D perception and 6D object pose datasets.
arXiv Detail & Related papers (2023-08-21T10:38:32Z) - Argoverse 2: Next Generation Datasets for Self-Driving Perception and
Forecasting [64.7364925689825]
Argoverse 2 (AV2) is a collection of three datasets for perception and forecasting research in the self-driving domain.
The Lidar dataset contains 20,000 sequences of unlabeled lidar point clouds and map-aligned pose.
The Motion Forecasting dataset contains 250,000 scenarios mined for interesting and challenging interactions between the autonomous vehicle and other actors in each local scene.
arXiv Detail & Related papers (2023-01-02T00:36:22Z) - aiMotive Dataset: A Multimodal Dataset for Robust Autonomous Driving
with Long-Range Perception [0.0]
This dataset consists of 176 scenes with synchronized and calibrated LiDAR, camera, and radar sensors covering a 360-degree field of view.
The collected data was captured in highway, urban, and suburban areas during daytime, night, and rain.
We trained unimodal and multimodal baseline models for 3D object detection.
arXiv Detail & Related papers (2022-11-17T10:19:59Z) - Benchmarking the Robustness of LiDAR-Camera Fusion for 3D Object
Detection [58.81316192862618]
Two critical sensors for 3D perception in autonomous driving are the camera and the LiDAR.
fusing these two modalities can significantly boost the performance of 3D perception models.
We benchmark the state-of-the-art fusion methods for the first time.
arXiv Detail & Related papers (2022-05-30T09:35:37Z) - TUM-VIE: The TUM Stereo Visual-Inertial Event Dataset [50.8779574716494]
Event cameras are bio-inspired vision sensors which measure per pixel brightness changes.
They offer numerous benefits over traditional, frame-based cameras, including low latency, high dynamic range, high temporal resolution and low power consumption.
To foster the development of 3D perception and navigation algorithms with event cameras, we present the TUM-VIE dataset.
arXiv Detail & Related papers (2021-08-16T19:53:56Z) - One Million Scenes for Autonomous Driving: ONCE Dataset [91.94189514073354]
We introduce the ONCE dataset for 3D object detection in the autonomous driving scenario.
The data is selected from 144 driving hours, which is 20x longer than the largest 3D autonomous driving dataset available.
We reproduce and evaluate a variety of self-supervised and semi-supervised methods on the ONCE dataset.
arXiv Detail & Related papers (2021-06-21T12:28:08Z) - PixSet : An Opportunity for 3D Computer Vision to Go Beyond Point Clouds
With a Full-Waveform LiDAR Dataset [0.11726720776908521]
Leddar PixSet is a new publicly available dataset (dataset.leddartech.com) for autonomous driving research and development.
The PixSet dataset contains approximately 29k frames from 97 sequences recorded in high-density urban areas.
arXiv Detail & Related papers (2021-02-24T01:13:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.