論文の概要: RegMixMatch: Optimizing Mixup Utilization in Semi-Supervised Learning
- arxiv url: http://arxiv.org/abs/2412.10741v1
- Date: Sat, 14 Dec 2024 08:22:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 14:02:44.525161
- Title: RegMixMatch: Optimizing Mixup Utilization in Semi-Supervised Learning
- Title(参考訳): RegMixMatch: 半教師付き学習における混合利用の最適化
- Authors: Haorong Han, Jidong Yuan, Chixuan Wei, Zhongyang Yu,
- Abstract要約: 半教師付きRegMixupは、さまざまなSSLベンチマークで最先端のパフォーマンスを達成する。
我々は,トップ2の予測クラスから低信頼度サンプルとその人工ラベルに情報を統合する,クラス認識ミックスアップ技術を開発した。
- 参考スコア(独自算出の注目度): 0.7274730603514221
- License:
- Abstract: Consistency regularization and pseudo-labeling have significantly advanced semi-supervised learning (SSL). Prior works have effectively employed Mixup for consistency regularization in SSL. However, our findings indicate that applying Mixup for consistency regularization may degrade SSL performance by compromising the purity of artificial labels. Moreover, most pseudo-labeling based methods utilize thresholding strategy to exclude low-confidence data, aiming to mitigate confirmation bias; however, this approach limits the utility of unlabeled samples. To address these challenges, we propose RegMixMatch, a novel framework that optimizes the use of Mixup with both high- and low-confidence samples in SSL. First, we introduce semi-supervised RegMixup, which effectively addresses reduced artificial labels purity by using both mixed samples and clean samples for training. Second, we develop a class-aware Mixup technique that integrates information from the top-2 predicted classes into low-confidence samples and their artificial labels, reducing the confirmation bias associated with these samples and enhancing their effective utilization. Experimental results demonstrate that RegMixMatch achieves state-of-the-art performance across various SSL benchmarks.
- Abstract(参考訳): 一貫性の正規化と擬似ラベル化は、半教師付き学習(SSL)を著しく進歩させた。
以前の作業では、SSLの一貫性の正則化にMixupを効果的に採用していた。
しかし, 整合性正則化にMixupを適用すると, 人工ラベルの純度を損なうことによりSSL性能が低下する可能性が示唆された。
さらに, 疑似ラベル方式では, 低信頼データを排除し, 確認バイアスを軽減するため, しきい値を用いた手法が多いが, 未ラベルサンプルの有用性は制限される。
これらの課題に対処するため、SSLの高信頼度と低信頼度の両方でMixupの使用を最適化する新しいフレームワークであるRegMixMatchを提案する。
まず、半教師付きRegMixupを導入し、混合サンプルとクリーンサンプルの両方をトレーニング用として使用することにより、削減された人工ラベルの純度を効果的に対処する。
第2に,トップ2予測クラスから低信頼度サンプルとその人工ラベルに情報を統合し,これらのサンプルに関連付けられた確認バイアスを低減し,有効利用を向上させるクラス認識ミックスアップ手法を開発した。
実験の結果、RegMixMatchはさまざまなSSLベンチマークで最先端のパフォーマンスを実現している。
関連論文リスト
- A Channel-ensemble Approach: Unbiased and Low-variance Pseudo-labels is Critical for Semi-supervised Classification [61.473485511491795]
半教師付き学習(SSL)はコンピュータビジョンにおける実践的な課題である。
Pseudo-label (PL) メソッド、例えば FixMatch や FreeMatch は SSL で State of The Art (SOTA) のパフォーマンスを取得する。
本稿では,複数の下位PLを理論的に保証された非偏りと低分散のPLに集約する,軽量なチャネルベースアンサンブル法を提案する。
論文 参考訳(メタデータ) (2024-03-27T09:49:37Z) - RankMatch: A Novel Approach to Semi-Supervised Label Distribution
Learning Leveraging Inter-label Correlations [52.549807652527306]
本稿では,SSLDL (Semi-Supervised Label Distribution Learning) の革新的なアプローチである RankMatch を紹介する。
RankMatchは、ラベルのない大量のデータとともに、少数のラベル付き例を効果的に活用する。
我々はRandMatchに縛られる理論的な一般化を確立し、広範な実験を通じて既存のSSLDL法に対する性能上の優位性を実証した。
論文 参考訳(メタデータ) (2023-12-11T12:47:29Z) - Learning with Noisy Labels Using Collaborative Sample Selection and
Contrastive Semi-Supervised Learning [76.00798972439004]
Collaborative Sample Selection (CSS)は、特定されたクリーンセットからノイズの多いサンプルを削除する。
半教師付き学習において、対照的な損失を伴う協調学習機構を導入する。
論文 参考訳(メタデータ) (2023-10-24T05:37:20Z) - Shrinking Class Space for Enhanced Certainty in Semi-Supervised Learning [59.44422468242455]
そこで我々はShrinkMatchと呼ばれる新しい手法を提案し、不確実なサンプルを学習する。
それぞれの不確実なサンプルに対して、元の Top-1 クラスを単に含むスランク類空間を適応的に求める。
次に、スランク空間における強と弱に強化された2つのサンプル間の整合正則化を課し、識別的表現を試みます。
論文 参考訳(メタデータ) (2023-08-13T14:05:24Z) - InPL: Pseudo-labeling the Inliers First for Imbalanced Semi-supervised
Learning [34.062061310242385]
不均衡半教師付き学習(SSL)のための疑似ラベルの新しい視点を提案する。
未表示のサンプルが「流通中」か「流通外」かを測定する。
実験により、我々のエネルギーベース擬似ラベル法である textbfInPL が、不均衡なSSLベンチマークにおいて信頼性ベースの手法よりも著しく優れていることが示された。
論文 参考訳(メタデータ) (2023-03-13T16:45:41Z) - Harnessing Hard Mixed Samples with Decoupled Regularizer [69.98746081734441]
Mixupは、決定境界を混合データで滑らかにすることで、ニューラルネットワークの一般化を改善する効率的なデータ拡張アプローチである。
本稿では,非結合型正規化器(Decoupled Mixup, DM)を用いた効率的な混合目標関数を提案する。
DMは、ミキシングの本来の滑らかさを損なうことなく、硬質混合試料を適応的に利用して識別特性をマイニングすることができる。
論文 参考訳(メタデータ) (2022-03-21T07:12:18Z) - Boosting Discriminative Visual Representation Learning with
Scenario-Agnostic Mixup [54.09898347820941]
自己教師付き学習(SSL)と教師付き学習(SL)の両方のシナリオに対して,textbfScenario-textbfAgnostic textbfMixup (SAMix)を提案する。
具体的には、2つの混合クラス間の局所的な滑らかさを最適化するために、混合生成の目的関数を仮説化し、検証する。
非自明な混合サンプルを効果的に提供し、転送可能な能力を向上させるラベルフリーな生成サブネットワークを設計する。
論文 参考訳(メタデータ) (2021-11-30T14:49:59Z) - SMILE: Self-Distilled MIxup for Efficient Transfer LEarning [42.59451803498095]
本研究では, SMILE-Self-Distilled Mixup for EffIcient Transfer LEarningを提案する。
混合画像を入力として、SMILEはCNN特徴抽出器の出力を正規化し、入力の混合特徴ベクトルから学習する。
トリプルレギュラライザーは、特徴空間とラベル空間の両方で混合効果のバランスをとりながら、前訓練タスクのサンプル間の線形性をバインドします。
論文 参考訳(メタデータ) (2021-03-25T16:02:21Z) - Consistency Regularization with Generative Adversarial Networks for
Semi-Supervised Learning [2.9707483702447783]
GAN(Adversarial Adversarial Networks)に基づく半教師付き学習(SSL)アプローチは,多数の未ラベルサンプルを利用して分類性能を向上させる。
しかし、彼らのパフォーマンスは、最先端の非GANベースのSSLアプローチよりも遅れている。
この主な理由は、局所摂動下で同じ画像上でのクラス確率予測の整合性の欠如である。
論文 参考訳(メタデータ) (2020-07-08T01:47:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。