PEARL: Input-Agnostic Prompt Enhancement with Negative Feedback Regulation for Class-Incremental Learning
- URL: http://arxiv.org/abs/2412.10900v2
- Date: Wed, 25 Dec 2024 17:44:35 GMT
- Title: PEARL: Input-Agnostic Prompt Enhancement with Negative Feedback Regulation for Class-Incremental Learning
- Authors: Yongchun Qin, Pengfei Fang, Hui Xue,
- Abstract summary: Class-incremental learning (CIL) aims to continuously introduce novel categories into a classification system without forgetting previously learned ones.
Prompt learning has been adopted in CIL for its ability to adjust data distribution to better align with pre-trained knowledge.
This paper critically examines the limitations of existing methods from the perspective of prompt learning.
- Score: 17.819582979803286
- License:
- Abstract: Class-incremental learning (CIL) aims to continuously introduce novel categories into a classification system without forgetting previously learned ones, thus adapting to evolving data distributions. Researchers are currently focusing on leveraging the rich semantic information of pre-trained models (PTMs) in CIL tasks. Prompt learning has been adopted in CIL for its ability to adjust data distribution to better align with pre-trained knowledge. This paper critically examines the limitations of existing methods from the perspective of prompt learning, which heavily rely on input information. To address this issue, we propose a novel PTM-based CIL method called Input-Agnostic Prompt Enhancement with Negative Feedback Regulation (PEARL). In PEARL, we implement an input-agnostic global prompt coupled with an adaptive momentum update strategy to reduce the model's dependency on data distribution, thereby effectively mitigating catastrophic forgetting. Guided by negative feedback regulation, this adaptive momentum update addresses the parameter sensitivity inherent in fixed-weight momentum updates. Furthermore, it fosters the continuous enhancement of the prompt for new tasks by harnessing correlations between different tasks in CIL. Experiments on six benchmarks demonstrate that our method achieves state-of-the-art performance. The code is available at: https://github.com/qinyongchun/PEARL.
Related papers
- Sparse Orthogonal Parameters Tuning for Continual Learning [34.462967722928724]
Continual learning methods based on pre-trained models (PTM) have recently gained attention which adapt to successive downstream tasks without catastrophic forgetting.
We propose a novel yet effective method called SoTU (Sparse Orthogonal Parameters TUning)
arXiv Detail & Related papers (2024-11-05T05:19:09Z) - Temporal-Difference Variational Continual Learning [89.32940051152782]
A crucial capability of Machine Learning models in real-world applications is the ability to continuously learn new tasks.
In Continual Learning settings, models often struggle to balance learning new tasks with retaining previous knowledge.
We propose new learning objectives that integrate the regularization effects of multiple previous posterior estimations.
arXiv Detail & Related papers (2024-10-10T10:58:41Z) - Beyond Prompt Learning: Continual Adapter for Efficient Rehearsal-Free Continual Learning [22.13331870720021]
We propose a beyond prompt learning approach to the RFCL task, called Continual Adapter (C-ADA)
C-ADA flexibly extends specific weights in CAL to learn new knowledge for each task and freezes old weights to preserve prior knowledge.
Our approach achieves significantly improved performance and training speed, outperforming the current state-of-the-art (SOTA) method.
arXiv Detail & Related papers (2024-07-14T17:40:40Z) - Adaptive Retention & Correction: Test-Time Training for Continual Learning [114.5656325514408]
A common problem in continual learning is the classification layer's bias towards the most recent task.
We name our approach Adaptive Retention & Correction (ARC)
ARC achieves an average performance increase of 2.7% and 2.6% on the CIFAR-100 and Imagenet-R datasets.
arXiv Detail & Related papers (2024-05-23T08:43:09Z) - Online Feature Updates Improve Online (Generalized) Label Shift Adaptation [51.328801874640675]
Our novel method, Online Label Shift adaptation with Online Feature Updates (OLS-OFU), leverages self-supervised learning to refine the feature extraction process.
By carefully designing the algorithm, OLS-OFU maintains the similar online regret convergence to the results in the literature while taking the improved features into account.
arXiv Detail & Related papers (2024-02-05T22:03:25Z) - Complementary Learning Subnetworks for Parameter-Efficient
Class-Incremental Learning [40.13416912075668]
We propose a rehearsal-free CIL approach that learns continually via the synergy between two Complementary Learning Subnetworks.
Our method achieves competitive results against state-of-the-art methods, especially in accuracy gain, memory cost, training efficiency, and task-order.
arXiv Detail & Related papers (2023-06-21T01:43:25Z) - CODA-Prompt: COntinual Decomposed Attention-based Prompting for
Rehearsal-Free Continual Learning [30.676509834338884]
Computer vision models suffer from a phenomenon known as catastrophic forgetting when learning novel concepts from continuously shifting training data.
We propose prompting approaches as an alternative to data-rehearsal.
We show that we outperform the current SOTA method DualPrompt on established benchmarks by as much as 4.5% in average final accuracy.
arXiv Detail & Related papers (2022-11-23T18:57:11Z) - Contextual Squeeze-and-Excitation for Efficient Few-Shot Image
Classification [57.36281142038042]
We present a new adaptive block called Contextual Squeeze-and-Excitation (CaSE) that adjusts a pretrained neural network on a new task to significantly improve performance.
We also present a new training protocol based on Coordinate-Descent called UpperCaSE that exploits meta-trained CaSE blocks and fine-tuning routines for efficient adaptation.
arXiv Detail & Related papers (2022-06-20T15:25:08Z) - META-Learning Eligibility Traces for More Sample Efficient Temporal
Difference Learning [2.0559497209595823]
We propose a meta-learning method for adjusting the eligibility trace parameter, in a state-dependent manner.
The adaptation is achieved with the help of auxiliary learners that learn distributional information about the update targets online.
We prove that, under some assumptions, the proposed method improves the overall quality of the update targets, by minimizing the overall target error.
arXiv Detail & Related papers (2020-06-16T03:41:07Z) - AdaS: Adaptive Scheduling of Stochastic Gradients [50.80697760166045]
We introduce the notions of textit"knowledge gain" and textit"mapping condition" and propose a new algorithm called Adaptive Scheduling (AdaS)
Experimentation reveals that, using the derived metrics, AdaS exhibits: (a) faster convergence and superior generalization over existing adaptive learning methods; and (b) lack of dependence on a validation set to determine when to stop training.
arXiv Detail & Related papers (2020-06-11T16:36:31Z) - DisCor: Corrective Feedback in Reinforcement Learning via Distribution
Correction [96.90215318875859]
We show that bootstrapping-based Q-learning algorithms do not necessarily benefit from corrective feedback.
We propose a new algorithm, DisCor, which computes an approximation to this optimal distribution and uses it to re-weight the transitions used for training.
arXiv Detail & Related papers (2020-03-16T16:18:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.