SoftVQ-VAE: Efficient 1-Dimensional Continuous Tokenizer
- URL: http://arxiv.org/abs/2412.10958v2
- Date: Fri, 20 Dec 2024 16:59:40 GMT
- Title: SoftVQ-VAE: Efficient 1-Dimensional Continuous Tokenizer
- Authors: Hao Chen, Ze Wang, Xiang Li, Ximeng Sun, Fangyi Chen, Jiang Liu, Jindong Wang, Bhiksha Raj, Zicheng Liu, Emad Barsoum,
- Abstract summary: SoftVQ-VAE is a continuous image tokenizer that leverages soft categorical posteriors to aggregate multiple codewords into each latent token.<n>Our approach compresses 256x256 and 512x512 images using as few as 32 or 64 1-dimensional tokens.<n>Remarkably, SoftVQ-VAE improves inference throughput by up to 18x for generating 256x256 images and 55x for 512x512 images.
- Score: 45.720721058671856
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Efficient image tokenization with high compression ratios remains a critical challenge for training generative models. We present SoftVQ-VAE, a continuous image tokenizer that leverages soft categorical posteriors to aggregate multiple codewords into each latent token, substantially increasing the representation capacity of the latent space. When applied to Transformer-based architectures, our approach compresses 256x256 and 512x512 images using as few as 32 or 64 1-dimensional tokens. Not only does SoftVQ-VAE show consistent and high-quality reconstruction, more importantly, it also achieves state-of-the-art and significantly faster image generation results across different denoising-based generative models. Remarkably, SoftVQ-VAE improves inference throughput by up to 18x for generating 256x256 images and 55x for 512x512 images while achieving competitive FID scores of 1.78 and 2.21 for SiT-XL. It also improves the training efficiency of the generative models by reducing the number of training iterations by 2.3x while maintaining comparable performance. With its fully-differentiable design and semantic-rich latent space, our experiment demonstrates that SoftVQ-VAE achieves efficient tokenization without compromising generation quality, paving the way for more efficient generative models. Code and model are released.
Related papers
- Token-Shuffle: Towards High-Resolution Image Generation with Autoregressive Models [92.18057318458528]
Token-Shuffle is a novel method that reduces the number of image tokens in Transformer.
Our strategy requires no additional pretrained text-encoder and enables MLLMs to support extremely high-resolution image synthesis.
In GenAI-benchmark, our 2.7B model achieves 0.77 overall score on hard prompts, outperforming AR models LlamaGen by 0.18 and diffusion models LDM by 0.15.
arXiv Detail & Related papers (2025-04-24T17:59:56Z) - FlexVAR: Flexible Visual Autoregressive Modeling without Residual Prediction [91.09318592542509]
This work challenges the residual prediction paradigm in visual autoregressive modeling.
It presents a new Flexible Visual AutoRegressive image generation paradigm.
This simple, intuitive approach swiftly learns visual distributions and makes the generation process more flexible and adaptable.
arXiv Detail & Related papers (2025-02-27T17:39:17Z) - Reconstruction vs. Generation: Taming Optimization Dilemma in Latent Diffusion Models [33.519892081718716]
We propose aligning the latent space with pre-trained vision foundation models when training the visual tokenizers.
Our proposed VA-VAE significantly expands the reconstruction-generation frontier of latent diffusion models.
We build an enhanced DiT baseline with improved training strategies and architecture designs, termed LightningDiT.
arXiv Detail & Related papers (2025-01-02T18:59:40Z) - Collaborative Decoding Makes Visual Auto-Regressive Modeling Efficient [52.96232442322824]
Collaborative Decoding (CoDe) is a novel efficient decoding strategy tailored for the Visual Auto-Regressive ( VAR) framework.<n>CoDe capitalizes on two critical observations: the substantially reduced parameter demands at larger scales and the exclusive generation patterns across different scales.<n>CoDe achieves a 1.7x speedup, slashes memory usage by around 50%, and preserves image quality with only a negligible FID increase from 1.95 to 1.98.
arXiv Detail & Related papers (2024-11-26T15:13:15Z) - Meissonic: Revitalizing Masked Generative Transformers for Efficient High-Resolution Text-to-Image Synthesis [62.06970466554273]
We present Meissonic, which elevates non-autoregressive masked image modeling (MIM) text-to-image to a level comparable with state-of-the-art diffusion models like SDXL.<n>We leverage high-quality training data, integrate micro-conditions informed by human preference scores, and employ feature compression layers.<n>Our model not only matches but often exceeds the performance of existing models like SDXL in generating high-quality, high-resolution images.
arXiv Detail & Related papers (2024-10-10T17:59:17Z) - MaskBit: Embedding-free Image Generation via Bit Tokens [54.827480008982185]
We present an empirical and systematic examination of VQGANs, leading to a modernized VQGAN.<n>Second contribution demonstrates that embedding-free image generation using bit tokens achieves a new state-of-the-art FID of 1.52 on the ImageNet 256x256 benchmark.
arXiv Detail & Related papers (2024-09-24T16:12:12Z) - An Image is Worth 32 Tokens for Reconstruction and Generation [54.24414696392026]
Transformer-based 1-Dimensional Tokenizer (TiTok) is an innovative approach that tokenizes images into 1D latent sequences.
TiTok achieves competitive performance to state-of-the-art approaches.
Our best-performing variant can significantly surpasses DiT-XL/2 (gFID 2.13 vs. 3.04) while still generating high-quality samples 74x faster.
arXiv Detail & Related papers (2024-06-11T17:59:56Z) - ConvLLaVA: Hierarchical Backbones as Visual Encoder for Large Multimodal Models [77.59651787115546]
High-resolution Large Multimodal Models (LMMs) encounter the challenges of excessive visual tokens and quadratic visual complexity.
We propose ConvLLaVA, which employs ConvNeXt, a hierarchical backbone, as the visual encoder of LMM.
ConvLLaVA compresses high-resolution images into information-rich visual features, effectively preventing the generation of excessive visual tokens.
arXiv Detail & Related papers (2024-05-24T17:34:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.