MorphiNet: A Graph Subdivision Network for Adaptive Bi-ventricle Surface Reconstruction
- URL: http://arxiv.org/abs/2412.10985v1
- Date: Sat, 14 Dec 2024 22:29:22 GMT
- Title: MorphiNet: A Graph Subdivision Network for Adaptive Bi-ventricle Surface Reconstruction
- Authors: Yu Deng, Yiyang Xu, Linglong Qian, Charlene Mauger, Anastasia Nasopoulou, Steven Williams, Michelle Williams, Steven Niederer, David Newby, Andrew McCulloch, Jeff Omens, Kuberan Pushprajah, Alistair Young,
- Abstract summary: This study introduces MorphiNet, a novel network that enhances heart model reconstruction by leveraging high-resolutionCT images.
MorphiNet encodes anatomical structures as gradient fields, transforming template meshes into patient-specific geometries.
The proposed method achieves high anatomy fidelity, demonstrating approximately 40% higher Dice scores, half the Hausdorff distance, and around 3 mm average surface error.
- Score: 2.0914823942325236
- License:
- Abstract: Cardiac Magnetic Resonance (CMR) imaging is widely used for heart modelling and digital twin computational analysis due to its ability to visualize soft tissues and capture dynamic functions. However, the anisotropic nature of CMR images, characterized by large inter-slice distances and misalignments from cardiac motion, poses significant challenges to accurate model reconstruction. These limitations result in data loss and measurement inaccuracies, hindering the capture of detailed anatomical structures. This study introduces MorphiNet, a novel network that enhances heart model reconstruction by leveraging high-resolution Computer Tomography (CT) images, unpaired with CMR images, to learn heart anatomy. MorphiNet encodes anatomical structures as gradient fields, transforming template meshes into patient-specific geometries. A multi-layer graph subdivision network refines these geometries while maintaining dense point correspondence. The proposed method achieves high anatomy fidelity, demonstrating approximately 40% higher Dice scores, half the Hausdorff distance, and around 3 mm average surface error compared to state-of-the-art methods. MorphiNet delivers superior results with greater inference efficiency. This approach represents a significant advancement in addressing the challenges of CMR-based heart model reconstruction, potentially improving digital twin computational analyses of cardiac structure and functions.
Related papers
- Explicit Differentiable Slicing and Global Deformation for Cardiac Mesh Reconstruction [8.730291904586656]
Mesh reconstruction of the cardiac anatomy from medical images is useful for shape and motion measurements and biophysics simulations.
Traditional voxel-based approaches rely on pre- and post-processing that compromises image fidelity.
We propose a novel explicit differentiable voxelization and slicing (DVS) algorithm that allows gradient backpropagation to a mesh from its slices.
arXiv Detail & Related papers (2024-09-03T17:19:31Z) - ShapeMamba-EM: Fine-Tuning Foundation Model with Local Shape Descriptors and Mamba Blocks for 3D EM Image Segmentation [49.42525661521625]
This paper presents ShapeMamba-EM, a specialized fine-tuning method for 3D EM segmentation.
It is tested over a wide range of EM images, covering five segmentation tasks and 10 datasets.
arXiv Detail & Related papers (2024-08-26T08:59:22Z) - Multi-view Hybrid Graph Convolutional Network for Volume-to-mesh Reconstruction in Cardiovascular MRI [43.47826598981827]
We introduce HybridVNet, a novel architecture for direct image-to-mesh extraction.
We show it can efficiently handle surface and volumetric meshes by encoding them as graph structures.
Our model combines traditional convolutional networks with variational graph generative models, deep supervision and mesh-specific regularisation.
arXiv Detail & Related papers (2023-11-22T21:51:29Z) - Deep Cardiac MRI Reconstruction with ADMM [7.694990352622926]
We present a deep learning (DL)-based method for accelerated cine and multi-contrast reconstruction in the context of cardiac imaging.
Our method optimize in both the image and k-space domains, allowing for high reconstruction fidelity.
arXiv Detail & Related papers (2023-10-10T13:46:11Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
We propose deep learning based neural networks to correct axial and coronal motion artifacts in OCT based on a single scan.
The experimental result shows that the proposed method can effectively correct motion artifacts and achieve smaller error than other methods.
arXiv Detail & Related papers (2023-05-27T03:55:19Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
Vessel segmentation is crucial in many medical image applications, such as detecting coronary stenoses, retinal vessel diseases and brain aneurysms.
We present a novel approach, the affinity feature strengthening network (AFN), which jointly models geometry and refines pixel-wise segmentation features using a contrast-insensitive, multiscale affinity approach.
arXiv Detail & Related papers (2022-11-12T05:39:17Z) - Learning Whole Heart Mesh Generation From Patient Images For
Computational Simulations [2.2496714271898166]
We present a fast and automated deep-learning method to construct simulation-suitable models of the heart from medical images.
The approach constructs meshes from 3D patient images by learning to deform a small set of deformation handles on a whole heart template.
arXiv Detail & Related papers (2022-03-20T10:19:05Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
We construct a novel interpretable dual domain network, termed InDuDoNet+, into which CT imaging process is finely embedded.
We analyze the CT values among different tissues, and merge the prior observations into a prior network for our InDuDoNet+, which significantly improve its generalization performance.
arXiv Detail & Related papers (2021-12-23T15:52:37Z) - A Deep-Learning Approach For Direct Whole-Heart Mesh Reconstruction [1.8047694351309207]
We propose a novel deep-learning-based approach that directly predicts whole heart surface meshes from volumetric CT and MR image data.
Our method demonstrated promising performance of generating high-resolution and high-quality whole heart reconstructions.
arXiv Detail & Related papers (2021-02-16T00:39:43Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.