A Deep-Learning Approach For Direct Whole-Heart Mesh Reconstruction
- URL: http://arxiv.org/abs/2102.07899v1
- Date: Tue, 16 Feb 2021 00:39:43 GMT
- Title: A Deep-Learning Approach For Direct Whole-Heart Mesh Reconstruction
- Authors: Fanwei Kong, Nathan Wilson, Shawn C. Shadden
- Abstract summary: We propose a novel deep-learning-based approach that directly predicts whole heart surface meshes from volumetric CT and MR image data.
Our method demonstrated promising performance of generating high-resolution and high-quality whole heart reconstructions.
- Score: 1.8047694351309207
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automated construction of surface geometries of cardiac structures from
volumetric medical images is important for a number of clinical applications.
While deep-learning based approaches have demonstrated promising reconstruction
precision, these approaches have mostly focused on voxel-wise segmentation
followed by surface reconstruction and post-processing techniques. However,
such approaches suffer from a number of limitations including disconnected
regions or incorrect surface topology due to erroneous segmentation and
stair-case artifacts due to limited segmentation resolution. We propose a novel
deep-learning-based approach that directly predicts whole heart surface meshes
from volumetric CT and MR image data. Our approach leverages a graph
convolutional neural network to predict deformation on mesh vertices from a
pre-defined mesh template to reconstruct multiple anatomical structures in a 3D
image volume. Our method demonstrated promising performance of generating
high-resolution and high-quality whole heart reconstructions and outperformed
prior deep-learning based methods on both CT and MR data in terms of precision
and surface quality. Furthermore, our method can more efficiently produce
temporally-consistent and feature-corresponding surface mesh predictions for
heart motion from CT or MR cine sequences, and therefore can potentially be
applied for efficiently constructing 4D whole heart dynamics.
Related papers
- Explicit Differentiable Slicing and Global Deformation for Cardiac Mesh Reconstruction [8.730291904586656]
Mesh reconstruction of the cardiac anatomy from medical images is useful for shape and motion measurements and biophysics simulations.
Traditional voxel-based approaches rely on pre- and post-processing that compromises image fidelity.
We propose a novel explicit differentiable voxelization and slicing (DVS) algorithm that allows gradient backpropagation to a mesh from its slices.
arXiv Detail & Related papers (2024-09-03T17:19:31Z) - Multi-view Hybrid Graph Convolutional Network for Volume-to-mesh Reconstruction in Cardiovascular MRI [43.47826598981827]
We introduce HybridVNet, a novel architecture for direct image-to-mesh extraction.
We show it can efficiently handle surface and volumetric meshes by encoding them as graph structures.
Our model combines traditional convolutional networks with variational graph generative models, deep supervision and mesh-specific regularisation.
arXiv Detail & Related papers (2023-11-22T21:51:29Z) - Abdominal organ segmentation via deep diffeomorphic mesh deformations [5.4173776411667935]
Abdominal organ segmentation from CT and MRI is an essential prerequisite for surgical planning and computer-aided navigation systems.
We employ template-based mesh reconstruction methods for joint liver, kidney, pancreas, and spleen segmentation.
The resulting method, UNetFlow, generalizes well to all four organs and can be easily fine-tuned on new data.
arXiv Detail & Related papers (2023-06-27T14:41:18Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
We propose deep learning based neural networks to correct axial and coronal motion artifacts in OCT based on a single scan.
The experimental result shows that the proposed method can effectively correct motion artifacts and achieve smaller error than other methods.
arXiv Detail & Related papers (2023-05-27T03:55:19Z) - Orientation-Shared Convolution Representation for CT Metal Artifact
Learning [63.67718355820655]
During X-ray computed tomography (CT) scanning, metallic implants carrying with patients often lead to adverse artifacts.
Existing deep-learning-based methods have gained promising reconstruction performance.
We propose an orientation-shared convolution representation strategy to adapt the physical prior structures of artifacts.
arXiv Detail & Related papers (2022-12-26T13:56:12Z) - DeepRecon: Joint 2D Cardiac Segmentation and 3D Volume Reconstruction
via A Structure-Specific Generative Method [12.26150675728958]
We propose an end-to-end latent-space-based framework, DeepRecon, that generates multiple clinically essential outcomes.
Our method identifies the optimal latent representation of the cine image that contains accurate semantic information for cardiac structures.
In particular, our model jointly generates synthetic images with accurate semantic information and segmentation of the cardiac structures.
arXiv Detail & Related papers (2022-06-14T20:46:11Z) - MonoSDF: Exploring Monocular Geometric Cues for Neural Implicit Surface
Reconstruction [72.05649682685197]
State-of-the-art neural implicit methods allow for high-quality reconstructions of simple scenes from many input views.
This is caused primarily by the inherent ambiguity in the RGB reconstruction loss that does not provide enough constraints.
Motivated by recent advances in the area of monocular geometry prediction, we explore the utility these cues provide for improving neural implicit surface reconstruction.
arXiv Detail & Related papers (2022-06-01T17:58:15Z) - Vox2Cortex: Fast Explicit Reconstruction of Cortical Surfaces from 3D
MRI Scans with Geometric Deep Neural Networks [3.364554138758565]
We propose Vox2Cortex, a deep learning-based algorithm that directly yields topologically correct, three-dimensional meshes of the boundaries of the cortex.
We show in extensive experiments on three brain MRI datasets that our meshes are as accurate as the ones reconstructed by state-of-the-art methods in the field.
arXiv Detail & Related papers (2022-03-17T17:06:00Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
We construct a novel interpretable dual domain network, termed InDuDoNet+, into which CT imaging process is finely embedded.
We analyze the CT values among different tissues, and merge the prior observations into a prior network for our InDuDoNet+, which significantly improve its generalization performance.
arXiv Detail & Related papers (2021-12-23T15:52:37Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
Photoacoustic tomography (PAT) has the potential to recover morphological and functional tissue properties.
We propose a novel approach to PAT data simulation, which we refer to as "learning to simulate"
We leverage the concept of Generative Adversarial Networks (GANs) trained on semantically annotated medical imaging data to generate plausible tissue geometries.
arXiv Detail & Related papers (2021-03-29T11:30:18Z) - Probabilistic 3D surface reconstruction from sparse MRI information [58.14653650521129]
We present a novel probabilistic deep learning approach for concurrent 3D surface reconstruction from sparse 2D MR image data and aleatoric uncertainty prediction.
Our method is capable of reconstructing large surface meshes from three quasi-orthogonal MR imaging slices from limited training sets.
arXiv Detail & Related papers (2020-10-05T14:18:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.