Cocoa: Co-Planning and Co-Execution with AI Agents
- URL: http://arxiv.org/abs/2412.10999v3
- Date: Tue, 15 Apr 2025 18:47:42 GMT
- Title: Cocoa: Co-Planning and Co-Execution with AI Agents
- Authors: K. J. Kevin Feng, Kevin Pu, Matt Latzke, Tal August, Pao Siangliulue, Jonathan Bragg, Daniel S. Weld, Amy X. Zhang, Joseph Chee Chang,
- Abstract summary: We present Cocoa, a system that introduces a novel design pattern -- interactive plans -- for collaborating with an AI agent.<n>Cocoa builds on interaction designs from computational notebooks and document editors to support flexible delegation of agency.<n>Using scientific research as a sample domain, our lab and field deployment studies found that Cocoa improved agent steerability without sacrificing ease-of-use.
- Score: 31.695129948650287
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human collaboration benefits from continuous coordination -- planning, delegating tasks, sharing progress, and adjusting objectives -- to align on shared goals. However, agentic AI systems often limit users to previewing or reviewing an agent's plans for fully autonomous execution. While this may be useful for confirmation and correction, it does not support deeper collaboration between humans and AI agents. We present Cocoa, a system that introduces a novel design pattern -- interactive plans -- for collaborating with an AI agent on complex, multi-step tasks. Informed by a formative study ($n=9$), Cocoa builds on interaction designs from computational notebooks and document editors to support flexible delegation of agency through Co-planning and Co-execution, where users collaboratively compose and execute plans with an Agent. Using scientific research as a sample domain, our lab (n=16) and field deployment (n=7) studies found that Cocoa improved agent steerability without sacrificing ease-of-use compared to a strong chat baseline. Additionally, researchers valued Cocoa for real-world projects and saw the interleaving of co-planning and co-execution as an effective novel paradigm for human-AI collaboration.
Related papers
- MultiAgentBench: Evaluating the Collaboration and Competition of LLM agents [59.825725526176655]
Large Language Models (LLMs) have shown remarkable capabilities as autonomous agents.
Existing benchmarks either focus on single-agent tasks or are confined to narrow domains, failing to capture the dynamics of multi-agent coordination and competition.
We introduce MultiAgentBench, a benchmark designed to evaluate LLM-based multi-agent systems across diverse, interactive scenarios.
arXiv Detail & Related papers (2025-03-03T05:18:50Z) - Collaborative Gym: A Framework for Enabling and Evaluating Human-Agent Collaboration [51.452664740963066]
Collaborative Gym is a framework enabling asynchronous, tripartite interaction among agents, humans, and task environments.
We instantiate Co-Gym with three representative tasks in both simulated and real-world conditions.
Our findings reveal that collaborative agents consistently outperform their fully autonomous counterparts in task performance.
arXiv Detail & Related papers (2024-12-20T09:21:15Z) - ChatCollab: Exploring Collaboration Between Humans and AI Agents in Software Teams [1.3967206132709542]
ChatCollab's novel architecture allows agents - human or AI - to join collaborations in any role.<n>Using software engineering as a case study, we find that our AI agents successfully identify their roles and responsibilities.<n>In relation to three prior multi-agent AI systems for software development, we find ChatCollab AI agents produce comparable or better software in an interactive game development task.
arXiv Detail & Related papers (2024-12-02T21:56:46Z) - CaPo: Cooperative Plan Optimization for Efficient Embodied Multi-Agent Cooperation [98.11670473661587]
CaPo improves cooperation efficiency with two phases: 1) meta-plan generation, and 2) progress-adaptive meta-plan and execution.
Experimental results on the ThreeDworld Multi-Agent Transport and Communicative Watch-And-Help tasks demonstrate that CaPo achieves much higher task completion rate and efficiency compared with state-of-the-arts.
arXiv Detail & Related papers (2024-11-07T13:08:04Z) - Learning Multi-Agent Communication from Graph Modeling Perspective [62.13508281188895]
We introduce a novel approach wherein we conceptualize the communication architecture among agents as a learnable graph.
Our proposed approach, CommFormer, efficiently optimize the communication graph and concurrently refines architectural parameters through gradient descent in an end-to-end manner.
arXiv Detail & Related papers (2024-05-14T12:40:25Z) - Anticipate & Collab: Data-driven Task Anticipation and Knowledge-driven Planning for Human-robot Collaboration [13.631341660350028]
An agent assisting humans in daily living activities can collaborate more effectively by anticipating upcoming tasks.
Data-driven methods represent the state of the art in task anticipation, planning, and related problems, but these methods are resource-hungry and opaque.
This paper describes DaTAPlan, our framework that significantly extends our prior work toward human-robot collaboration.
arXiv Detail & Related papers (2024-04-04T16:52:48Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgent is a novel framework that harnesses large language models to create proactive agents.
ProAgent can analyze the present state, and infer the intentions of teammates from observations.
ProAgent exhibits a high degree of modularity and interpretability, making it easily integrated into various coordination scenarios.
arXiv Detail & Related papers (2023-08-22T10:36:56Z) - Building Cooperative Embodied Agents Modularly with Large Language
Models [104.57849816689559]
We address challenging multi-agent cooperation problems with decentralized control, raw sensory observations, costly communication, and multi-objective tasks instantiated in various embodied environments.
We harness the commonsense knowledge, reasoning ability, language comprehension, and text generation prowess of LLMs and seamlessly incorporate them into a cognitive-inspired modular framework.
Our experiments on C-WAH and TDW-MAT demonstrate that CoELA driven by GPT-4 can surpass strong planning-based methods and exhibit emergent effective communication.
arXiv Detail & Related papers (2023-07-05T17:59:27Z) - CAMEL: Communicative Agents for "Mind" Exploration of Large Language
Model Society [58.04479313658851]
This paper explores the potential of building scalable techniques to facilitate autonomous cooperation among communicative agents.
We propose a novel communicative agent framework named role-playing.
Our contributions include introducing a novel communicative agent framework, offering a scalable approach for studying the cooperative behaviors and capabilities of multi-agent systems.
arXiv Detail & Related papers (2023-03-31T01:09:00Z) - Behaviour-conditioned policies for cooperative reinforcement learning
tasks [41.74498230885008]
In various real-world tasks, an agent needs to cooperate with unknown partner agent types.
Deep reinforcement learning models can be trained to deliver the required functionality but are known to suffer from sample inefficiency and slow learning.
We suggest a method, where we synthetically produce populations of agents with different behavioural patterns together with ground truth data of their behaviour.
We additionally suggest an agent architecture, which can efficiently use the generated data and gain the meta-learning capability.
arXiv Detail & Related papers (2021-10-04T09:16:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.