Anticipate & Collab: Data-driven Task Anticipation and Knowledge-driven Planning for Human-robot Collaboration
- URL: http://arxiv.org/abs/2404.03587v1
- Date: Thu, 4 Apr 2024 16:52:48 GMT
- Title: Anticipate & Collab: Data-driven Task Anticipation and Knowledge-driven Planning for Human-robot Collaboration
- Authors: Shivam Singh, Karthik Swaminathan, Raghav Arora, Ramandeep Singh, Ahana Datta, Dipanjan Das, Snehasis Banerjee, Mohan Sridharan, Madhava Krishna,
- Abstract summary: An agent assisting humans in daily living activities can collaborate more effectively by anticipating upcoming tasks.
Data-driven methods represent the state of the art in task anticipation, planning, and related problems, but these methods are resource-hungry and opaque.
This paper describes DaTAPlan, our framework that significantly extends our prior work toward human-robot collaboration.
- Score: 13.631341660350028
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: An agent assisting humans in daily living activities can collaborate more effectively by anticipating upcoming tasks. Data-driven methods represent the state of the art in task anticipation, planning, and related problems, but these methods are resource-hungry and opaque. Our prior work introduced a proof of concept framework that used an LLM to anticipate 3 high-level tasks that served as goals for a classical planning system that computed a sequence of low-level actions for the agent to achieve these goals. This paper describes DaTAPlan, our framework that significantly extends our prior work toward human-robot collaboration. Specifically, DaTAPlan planner computes actions for an agent and a human to collaboratively and jointly achieve the tasks anticipated by the LLM, and the agent automatically adapts to unexpected changes in human action outcomes and preferences. We evaluate DaTAPlan capabilities in a realistic simulation environment, demonstrating accurate task anticipation, effective human-robot collaboration, and the ability to adapt to unexpected changes. Project website: https://dataplan-hrc.github.io
Related papers
- Propose, Assess, Search: Harnessing LLMs for Goal-Oriented Planning in Instructional Videos [48.15438373870542]
VidAssist is an integrated framework designed for zero/few-shot goal-oriented planning in instructional videos.
It employs a breadth-first search algorithm for optimal plan generation.
Experiments demonstrate that VidAssist offers a unified framework for different goal-oriented planning setups.
arXiv Detail & Related papers (2024-09-30T17:57:28Z) - WorkArena++: Towards Compositional Planning and Reasoning-based Common Knowledge Work Tasks [85.95607119635102]
Large language models (LLMs) can mimic human-like intelligence.
WorkArena++ is designed to evaluate the planning, problem-solving, logical/arithmetic reasoning, retrieval, and contextual understanding abilities of web agents.
arXiv Detail & Related papers (2024-07-07T07:15:49Z) - Ask-before-Plan: Proactive Language Agents for Real-World Planning [68.08024918064503]
Proactive Agent Planning requires language agents to predict clarification needs based on user-agent conversation and agent-environment interaction.
We propose a novel multi-agent framework, Clarification-Execution-Planning (textttCEP), which consists of three agents specialized in clarification, execution, and planning.
arXiv Detail & Related papers (2024-06-18T14:07:28Z) - Large Language Model-based Human-Agent Collaboration for Complex Task
Solving [94.3914058341565]
We introduce the problem of Large Language Models (LLMs)-based human-agent collaboration for complex task-solving.
We propose a Reinforcement Learning-based Human-Agent Collaboration method, ReHAC.
This approach includes a policy model designed to determine the most opportune stages for human intervention within the task-solving process.
arXiv Detail & Related papers (2024-02-20T11:03:36Z) - Adaptation and Communication in Human-Robot Teaming to Handle
Discrepancies in Agents' Beliefs about Plans [13.637799815698559]
We provide an online execution algorithm based on Monte Carlo Tree Search for the agent to plan its action.
We show that our agent is better equipped to work in teams without the guarantee of a shared mental model.
arXiv Detail & Related papers (2023-07-07T03:05:34Z) - Multimodal Contextualized Plan Prediction for Embodied Task Completion [9.659463406886301]
Task planning is an important component of traditional robotics systems enabling robots to compose fine grained skills to perform more complex tasks.
Recent work building systems for translating natural language to executable actions for task completion in simulated embodied agents is focused on directly predicting low level action sequences.
We focus on predicting a higher level plan representation for one such embodied task completion dataset - TEACh.
arXiv Detail & Related papers (2023-05-10T22:29:12Z) - A Framework for Neurosymbolic Robot Action Planning using Large Language Models [3.0501524254444767]
We present a framework aimed at bridging the gap between symbolic task planning and machine learning approaches.
The rationale is training Large Language Models (LLMs) into a neurosymbolic task planner compatible with the Planning Domain Definition Language (PDDL)
Preliminary results in selected domains show that our method can: (i) solve 95.5% of problems in a test data set of 1,000 samples; (ii) produce plans up to 13.5% shorter than a traditional symbolic planner; (iii) reduce average overall waiting times for a plan availability by up to 61.4%.
arXiv Detail & Related papers (2023-03-01T11:54:22Z) - Achieving mouse-level strategic evasion performance using real-time
computational planning [59.60094442546867]
Planning is an extraordinary ability in which the brain imagines and then enacts evaluated possible futures.
We develop a more efficient biologically-inspired planning algorithm, TLPPO, based on work on how the ecology of an animal governs the value of spatial planning.
We compare the performance of a real-time agent using TLPPO against the performance of live mice, all tasked with evading a robot predator.
arXiv Detail & Related papers (2022-11-04T18:34:36Z) - Model-based Reinforcement Learning for Decentralized Multiagent
Rendezvous [66.6895109554163]
Underlying the human ability to align goals with other agents is their ability to predict the intentions of others and actively update their own plans.
We propose hierarchical predictive planning (HPP), a model-based reinforcement learning method for decentralized multiagent rendezvous.
arXiv Detail & Related papers (2020-03-15T19:49:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.