FlashSparse: Minimizing Computation Redundancy for Fast Sparse Matrix Multiplications on Tensor Cores
- URL: http://arxiv.org/abs/2412.11007v1
- Date: Sun, 15 Dec 2024 01:12:33 GMT
- Title: FlashSparse: Minimizing Computation Redundancy for Fast Sparse Matrix Multiplications on Tensor Cores
- Authors: Jinliang Shi, Shigang Li, Youxuan Xu, Rongtian Fu, Xueying Wang, Tong Wu,
- Abstract summary: We propose FlashSparse, a novel approach to bridge the gap between sparse workloads and the TCU architecture.
Specifically, FlashSparse minimizes the sparse granularity for SpMM and SDDMM on TCUs through a novel swap-and-transpose matrix multiplication strategy.
We show that FlashSparse sets a new state-of-the-art for sparse matrix multiplications (geometric mean 5.5x speedup over DTC-SpMM and 3.22x speedup over RoDe)
- Score: 6.404201720333765
- License:
- Abstract: Sparse Matrix-matrix Multiplication (SpMM) and Sampled Dense-dense Matrix Multiplication (SDDMM) are important sparse operators in scientific computing and deep learning. Tensor Core Units (TCUs) enhance modern accelerators with superior computing power, which is promising to boost the performance of matrix operators to a higher level. However, due to the irregularity of unstructured sparse data, it is difficult to deliver practical speedups on TCUs. To this end, we propose FlashSparse, a novel approach to bridge the gap between sparse workloads and the TCU architecture. Specifically, FlashSparse minimizes the sparse granularity for SpMM and SDDMM on TCUs through a novel swap-and-transpose matrix multiplication strategy. Benefiting from the minimum sparse granularity, the computation redundancy is remarkably reduced while the computing power of TCUs is fully utilized. Besides, FlashSparse is equipped with a memory-efficient thread mapping strategy for coalesced data access and a sparse matrix storage format to save memory footprint. Extensive experimental results on H100 and RTX 4090 GPUs show that FlashSparse sets a new state-of-the-art for sparse matrix multiplications (geometric mean 5.5x speedup over DTC-SpMM and 3.22x speedup over RoDe).
Related papers
- SMM-Conv: Scalar Matrix Multiplication with Zero Packing for Accelerated Convolution [4.14360329494344]
We present a novel approach for accelerating convolutions during inference for CPU-based architectures.
Our experiments with commonly used network architectures demonstrate a significant speedup compared to existing indirect methods.
arXiv Detail & Related papers (2024-11-23T21:43:38Z) - Efficient Arbitrary Precision Acceleration for Large Language Models on GPU Tensor Cores [3.6385567224218556]
Large language models (LLMs) have been widely applied but face challenges in efficient inference.
We introduce a novel bipolar-INT data format that facilitates parallel computing and supports symmetric quantization.
We implement an arbitrary precision matrix multiplication scheme that decomposes and recovers at the bit level, enabling flexible precision.
arXiv Detail & Related papers (2024-09-26T14:17:58Z) - Fast inference with Kronecker-sparse matrices [4.387337528923525]
We present the first energy and time benchmarks for the multiplication with Kronecker-sparse matrices.
Our benchmark also reveals that specialized implementations spend up to 50% of their total runtime on memory rewriting operations.
We implement a new kernel that achieves a median speed-up of x1.4, while also cutting energy consumption by 15%.
arXiv Detail & Related papers (2024-05-23T19:36:10Z) - Optimized Sparse Matrix Operations for Reverse Mode Automatic
Differentiation [3.72826300260966]
We present an implementation of a CSR-based sparse matrix wrapper for PyTorch with acceleration for basic matrix operations, as well as automatic differentiability.
We also present several applications of the resulting sparse kernels to optimization problems, demonstrating ease of implementation and performance measurements versus their dense counterparts.
arXiv Detail & Related papers (2022-12-10T00:46:51Z) - Efficient Dataset Distillation Using Random Feature Approximation [109.07737733329019]
We propose a novel algorithm that uses a random feature approximation (RFA) of the Neural Network Gaussian Process (NNGP) kernel.
Our algorithm provides at least a 100-fold speedup over KIP and can run on a single GPU.
Our new method, termed an RFA Distillation (RFAD), performs competitively with KIP and other dataset condensation algorithms in accuracy over a range of large-scale datasets.
arXiv Detail & Related papers (2022-10-21T15:56:13Z) - RSC: Accelerating Graph Neural Networks Training via Randomized Sparse
Computations [56.59168541623729]
Training graph neural networks (GNNs) is time consuming because sparse graph-based operations are hard to be accelerated by hardware.
We explore trading off the computational precision to reduce the time complexity via sampling-based approximation.
We propose Randomized Sparse Computation, which for the first time demonstrate the potential of training GNNs with approximated operations.
arXiv Detail & Related papers (2022-10-19T17:25:33Z) - Batch-efficient EigenDecomposition for Small and Medium Matrices [65.67315418971688]
EigenDecomposition (ED) is at the heart of many computer vision algorithms and applications.
We propose a QR-based ED method dedicated to the application scenarios of computer vision.
arXiv Detail & Related papers (2022-07-09T09:14:12Z) - NumS: Scalable Array Programming for the Cloud [82.827921577004]
We present NumS, an array programming library which optimize NumPy-like expressions on task-based distributed systems.
This is achieved through a novel scheduler called Load Simulated Hierarchical Scheduling (LSHS)
We show that LSHS enhances performance on Ray by decreasing network load by a factor of 2x, requiring 4x less memory, and reducing execution time by 10x on the logistic regression problem.
arXiv Detail & Related papers (2022-06-28T20:13:40Z) - Distributed Out-of-Memory NMF on CPU/GPU Architectures [1.0051474951635875]
We propose an efficient out-of-memory implementation of the Non-negative Matrix Factorization (NMF) algorithm for HPC systems.
Benchmark results show significant improvement of 32X to 76x speedup with the new implementation using GPU over the CPU-based NMFk.
arXiv Detail & Related papers (2022-02-19T03:49:21Z) - MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning [72.80896338009579]
We find that the memory bottleneck is due to the imbalanced memory distribution in convolutional neural network (CNN) designs.
We propose a generic patch-by-patch inference scheduling, which significantly cuts down the peak memory.
We automate the process with neural architecture search to jointly optimize the neural architecture and inference scheduling, leading to MCUNetV2.
arXiv Detail & Related papers (2021-10-28T17:58:45Z) - VersaGNN: a Versatile accelerator for Graph neural networks [81.1667080640009]
We propose textitVersaGNN, an ultra-efficient, systolic-array-based versatile hardware accelerator.
textitVersaGNN achieves on average 3712$times$ speedup with 1301.25$times$ energy reduction on CPU, and 35.4$times$ speedup with 17.66$times$ energy reduction on GPU.
arXiv Detail & Related papers (2021-05-04T04:10:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.