Efficient Arbitrary Precision Acceleration for Large Language Models on GPU Tensor Cores
- URL: http://arxiv.org/abs/2409.17870v2
- Date: Fri, 18 Oct 2024 02:01:18 GMT
- Title: Efficient Arbitrary Precision Acceleration for Large Language Models on GPU Tensor Cores
- Authors: Shaobo Ma, Chao Fang, Haikuo Shao, Zhongfeng Wang,
- Abstract summary: Large language models (LLMs) have been widely applied but face challenges in efficient inference.
We introduce a novel bipolar-INT data format that facilitates parallel computing and supports symmetric quantization.
We implement an arbitrary precision matrix multiplication scheme that decomposes and recovers at the bit level, enabling flexible precision.
- Score: 3.6385567224218556
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have been widely applied but face challenges in efficient inference. While quantization methods reduce computational demands, ultra-low bit quantization with arbitrary precision is hindered by limited GPU Tensor Core support and inefficient memory management, leading to suboptimal acceleration. To address these challenges, we propose a comprehensive acceleration scheme for arbitrary precision LLMs. At its core, we introduce a novel bipolar-INT data format that facilitates parallel computing and supports symmetric quantization, effectively reducing data redundancy. Building on this, we implement an arbitrary precision matrix multiplication scheme that decomposes and recovers matrices at the bit level, enabling flexible precision while maximizing GPU Tensor Core utilization. Furthermore, we develop an efficient matrix preprocessing method that optimizes data layout for subsequent computations. Finally, we design a data recovery-oriented memory management system that strategically utilizes fast shared memory, significantly enhancing kernel execution speed and minimizing memory access latency. Experimental results demonstrate our approach's effectiveness, with up to 2.4\times speedup in matrix multiplication compared to NVIDIA's CUTLASS. When integrated into LLMs, we achieve up to 6.7\times inference acceleration. These improvements significantly enhance LLM inference efficiency, enabling broader and more responsive applications of LLMs.
Related papers
- Progressive Mixed-Precision Decoding for Efficient LLM Inference [49.05448842542558]
We introduce Progressive Mixed-Precision Decoding (PMPD) to address the memory-boundedness of decoding.
PMPD achieves 1.4$-$12.2$times$ speedup in matrix-vector multiplications over fp16 models.
Our approach delivers a throughput gain of 3.8$-$8.0$times$ over fp16 models and up to 1.54$times$ over uniform quantization approaches.
arXiv Detail & Related papers (2024-10-17T11:46:33Z) - Search for Efficient Large Language Models [52.98684997131108]
Large Language Models (LLMs) have long held sway in the realms of artificial intelligence research.
Weight pruning, quantization, and distillation have been embraced to compress LLMs, targeting memory reduction and inference acceleration.
Most model compression techniques concentrate on weight optimization, overlooking the exploration of optimal architectures.
arXiv Detail & Related papers (2024-09-25T21:32:12Z) - Sparser is Faster and Less is More: Efficient Sparse Attention for Long-Range Transformers [58.5711048151424]
We introduce SPARSEK Attention, a novel sparse attention mechanism designed to overcome computational and memory obstacles.
Our approach integrates a scoring network and a differentiable top-k mask operator, SPARSEK, to select a constant number of KV pairs for each query.
Experimental results reveal that SPARSEK Attention outperforms previous sparse attention methods.
arXiv Detail & Related papers (2024-06-24T15:55:59Z) - Tender: Accelerating Large Language Models via Tensor Decomposition and Runtime Requantization [0.6445087473595953]
Large language models (LLMs) demonstrate outstanding performance in various tasks in machine learning.
deploying LLM inference poses challenges due to the high compute and memory requirements.
We present Tender, an algorithm-hardware co-design solution that enables efficient deployment of LLM inference at low precision.
arXiv Detail & Related papers (2024-06-16T09:51:55Z) - ShiftAddLLM: Accelerating Pretrained LLMs via Post-Training Multiplication-Less Reparameterization [13.622268474310918]
ShiftAddLLM is an efficient multiplication-free model for large language models.
It achieves perplexity improvements of 5.6 and 22.7 points at comparable or lower latency.
Experiments on five LLM families and eight tasks consistently validate the effectiveness of ShiftAddLLM.
arXiv Detail & Related papers (2024-06-10T02:47:55Z) - DB-LLM: Accurate Dual-Binarization for Efficient LLMs [83.70686728471547]
Large language models (LLMs) have significantly advanced the field of natural language processing.
Existing ultra-low-bit quantization always causes severe accuracy drops.
We propose a novel Dual-Binarization method for LLMs, namely DB-LLM.
arXiv Detail & Related papers (2024-02-19T09:04:30Z) - Revisiting Zeroth-Order Optimization for Memory-Efficient LLM Fine-Tuning: A Benchmark [166.40879020706151]
This paper proposes a shift towards BP-free, zeroth-order (ZO) optimization as a solution for reducing memory costs during fine-tuning.
Unlike traditional ZO-SGD methods, our work expands the exploration to a wider array of ZO optimization techniques.
Our study unveils previously overlooked optimization principles, highlighting the importance of task alignment, the role of the forward gradient method, and the balance between algorithm complexity and fine-tuning performance.
arXiv Detail & Related papers (2024-02-18T14:08:48Z) - Efficient LLM inference solution on Intel GPU [19.154403468201924]
Transformer based Large Language Models (LLMs) have been widely used in many fields.
We propose an efficient LLM inference solution with low latency and high throughput.
Compared with the standard HuggingFace implementation, the proposed solution achieves up to 7x lower token latency and 27x higher throughput.
arXiv Detail & Related papers (2023-12-19T05:40:43Z) - AdaLomo: Low-memory Optimization with Adaptive Learning Rate [59.64965955386855]
We introduce low-memory optimization with adaptive learning rate (AdaLomo) for large language models.
AdaLomo results on par with AdamW, while significantly reducing memory requirements, thereby lowering the hardware barrier to training large language models.
arXiv Detail & Related papers (2023-10-16T09:04:28Z) - Sparse Systolic Tensor Array for Efficient CNN Hardware Acceleration [14.958793135751149]
Convolutional neural network (CNN) inference on mobile devices demands efficient hardware acceleration of low-precision (INT8) general matrix multiplication (GEMM)
Exploiting data sparsity is a common approach to further accelerate GEMM for CNN inference, and in particular, structural sparsity has the advantages of predictable load balancing and very low index overhead.
We address a key architectural challenge with structural sparsity: how to provide support for a range of sparsity levels while maintaining high utilization of the hardware.
arXiv Detail & Related papers (2020-09-04T20:17:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.