Few-Shot Inductive Learning on Temporal Knowledge Graphs using
Concept-Aware Information
- URL: http://arxiv.org/abs/2211.08169v1
- Date: Tue, 15 Nov 2022 14:23:07 GMT
- Title: Few-Shot Inductive Learning on Temporal Knowledge Graphs using
Concept-Aware Information
- Authors: Zifeng Ding, Jingpei Wu, Bailan He, Yunpu Ma, Zhen Han, Volker Tresp
- Abstract summary: We propose a few-shot out-of-graph (OOG) link prediction task for temporal knowledge graphs (TKGs)
We predict the missing entities from the links concerning unseen entities by employing a meta-learning framework.
Our model achieves superior performance on all three datasets.
- Score: 31.10140298420744
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge graph completion (KGC) aims to predict the missing links among
knowledge graph (KG) entities. Though various methods have been developed for
KGC, most of them can only deal with the KG entities seen in the training set
and cannot perform well in predicting links concerning novel entities in the
test set. Similar problem exists in temporal knowledge graphs (TKGs), and no
previous temporal knowledge graph completion (TKGC) method is developed for
modeling newly-emerged entities. Compared to KGs, TKGs require temporal
reasoning techniques for modeling, which naturally increases the difficulty in
dealing with novel, yet unseen entities. In this work, we focus on the
inductive learning of unseen entities' representations on TKGs. We propose a
few-shot out-of-graph (OOG) link prediction task for TKGs, where we predict the
missing entities from the links concerning unseen entities by employing a
meta-learning framework and utilizing the meta-information provided by only few
edges associated with each unseen entity. We construct three new datasets for
TKG few-shot OOG link prediction, and we propose a model that mines the
concept-aware information among entities. Experimental results show that our
model achieves superior performance on all three datasets and our concept-aware
modeling component demonstrates a strong effect.
Related papers
- Distill-SynthKG: Distilling Knowledge Graph Synthesis Workflow for Improved Coverage and Efficiency [59.6772484292295]
Knowledge graphs (KGs) generated by large language models (LLMs) are increasingly valuable for Retrieval-Augmented Generation (RAG) applications.
Existing KG extraction methods rely on prompt-based approaches, which are inefficient for processing large-scale corpora.
We propose SynthKG, a multi-step, document-level synthesis KG workflow based on LLMs.
We also design a novel graph-based retrieval framework for RAG.
arXiv Detail & Related papers (2024-10-22T00:47:54Z) - Knowledge Graph Embedding: An Overview [42.16033541753744]
We make a comprehensive overview of the current state of research in Knowledge Graph completion.
We focus on two main branches of KG embedding (KGE) design: 1) distance-based methods and 2) semantic matching-based methods.
Next, we delve into CompoundE and CompoundE3D, which draw inspiration from 2D and 3D affine operations.
arXiv Detail & Related papers (2023-09-21T21:52:42Z) - Normalizing Flow-based Neural Process for Few-Shot Knowledge Graph
Completion [69.55700751102376]
Few-shot knowledge graph completion (FKGC) aims to predict missing facts for unseen relations with few-shot associated facts.
Existing FKGC methods are based on metric learning or meta-learning, which often suffer from the out-of-distribution and overfitting problems.
In this paper, we propose a normalizing flow-based neural process for few-shot knowledge graph completion (NP-FKGC)
arXiv Detail & Related papers (2023-04-17T11:42:28Z) - Improving Few-Shot Inductive Learning on Temporal Knowledge Graphs using
Confidence-Augmented Reinforcement Learning [24.338098716004485]
TKGC aims to predict the missing links among the entities in a temporal knwoledge graph (TKG)
Recently, a new task, i.e., TKG few-shot out-of-graph (OOG) link prediction, is proposed.
We propose a TKGC method FITCARL that combines few-shot learning with reinforcement learning to solve this task.
arXiv Detail & Related papers (2023-04-02T20:05:20Z) - Meta-Learning Based Knowledge Extrapolation for Temporal Knowledge Graph [4.103806361930888]
Temporal KGs (TKGs) extend traditional Knowledge Graphs by associating static triples with timestamps forming quadruples.
We propose a Meta-Learning based Temporal Knowledge Graph Extrapolation (MTKGE) model, which is trained on link prediction tasks sampled from the existing TKGs.
We show that MTKGE consistently outperforms both the existing state-of-the-art models for knowledge graph extrapolation.
arXiv Detail & Related papers (2023-02-11T09:52:26Z) - A Survey of Knowledge Graph Reasoning on Graph Types: Static, Dynamic,
and Multimodal [57.8455911689554]
Knowledge graph reasoning (KGR) aims to deduce new facts from existing facts based on mined logic rules underlying knowledge graphs (KGs)
It has been proven to significantly benefit the usage of KGs in many AI applications, such as question answering, recommendation systems, and etc.
arXiv Detail & Related papers (2022-12-12T08:40:04Z) - Search to Pass Messages for Temporal Knowledge Graph Completion [97.40256786473516]
We propose to use neural architecture search (NAS) to design data-specific message passing architecture for temporal knowledge graphs (TKGs) completion.
In particular, we develop a generalized framework to explore topological and temporal information in TKGs.
We adopt a search algorithm, which trains a supernet structure by sampling single path for efficient search with less cost.
arXiv Detail & Related papers (2022-10-30T04:05:06Z) - Disconnected Emerging Knowledge Graph Oriented Inductive Link Prediction [0.0]
We propose a novel model entitled DEKG-ILP (Disconnected Emerging Knowledge Graph Oriented Inductive Link Prediction)
The module CLRM is developed to extract global relation-based semantic features that are shared between original KGs and DEKGs.
The module GSM is proposed to extract the local subgraph topological information around each link in KGs.
arXiv Detail & Related papers (2022-09-03T10:58:24Z) - Learning Meta Representations of One-shot Relations for Temporal
Knowledge Graph Link Prediction [33.36701435886095]
Few-shot relational learning for static knowledge graphs (KGs) has drawn greater interest in recent years.
TKGs contain rich temporal information, thus requiring temporal reasoning techniques for modeling.
This poses a greater challenge in learning few-shot relations in the temporal context.
arXiv Detail & Related papers (2022-05-21T15:17:52Z) - Learning Intents behind Interactions with Knowledge Graph for
Recommendation [93.08709357435991]
Knowledge graph (KG) plays an increasingly important role in recommender systems.
Existing GNN-based models fail to identify user-item relation at a fine-grained level of intents.
We propose a new model, Knowledge Graph-based Intent Network (KGIN)
arXiv Detail & Related papers (2021-02-14T03:21:36Z) - Inductive Learning on Commonsense Knowledge Graph Completion [89.72388313527296]
Commonsense knowledge graph (CKG) is a special type of knowledge graph (CKG) where entities are composed of free-form text.
We propose to study the inductive learning setting for CKG completion where unseen entities may present at test time.
InductivE significantly outperforms state-of-the-art baselines in both standard and inductive settings on ATOMIC and ConceptNet benchmarks.
arXiv Detail & Related papers (2020-09-19T16:10:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.