論文の概要: Semantic Steganography: A Framework for Robust and High-Capacity Information Hiding using Large Language Models
- arxiv url: http://arxiv.org/abs/2412.11043v1
- Date: Sun, 15 Dec 2024 04:04:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:53:43.508940
- Title: Semantic Steganography: A Framework for Robust and High-Capacity Information Hiding using Large Language Models
- Title(参考訳): Semantic Steganography:大規模言語モデルを用いたロバスト・高容量情報共有フレームワーク
- Authors: Minhao Bai, Jinshuai Yang, Kaiyi Pang, Yongfeng Huang, Yue Gao,
- Abstract要約: 生成言語ステガノグラフィーは、モデル生成テキストに情報を隠蔽する一般的な技術となっている。
大規模言語モデル(LLM)に基づく意味的ステガノグラフィーフレームワークを提案する。
このフレームワークは複雑なチャネルでの送信に対して堅牢性と信頼性を提供し、テキストレンダリングやワードブロッキングに対する耐性を提供する。
- 参考スコア(独自算出の注目度): 25.52890764952079
- License:
- Abstract: In the era of Large Language Models (LLMs), generative linguistic steganography has become a prevalent technique for hiding information within model-generated texts. However, traditional steganography methods struggle to effectively align steganographic texts with original model-generated texts due to the lower entropy of the predicted probability distribution of LLMs. This results in a decrease in embedding capacity and poses challenges for decoding stegos in real-world communication channels. To address these challenges, we propose a semantic steganography framework based on LLMs, which construct a semantic space and map secret messages onto this space using ontology-entity trees. This framework offers robustness and reliability for transmission in complex channels, as well as resistance to text rendering and word blocking. Additionally, the stegos generated by our framework are indistinguishable from the covers and achieve a higher embedding capacity compared to state-of-the-art steganography methods, while producing higher quality stegos.
- Abstract(参考訳): LLM(Large Language Models)の時代、生成言語ステガノグラフィーは、モデル生成テキストに情報を隠蔽する技術として広く普及してきた。
しかし,従来のステガノグラフィー手法では,予測確率分布のエントロピーが低かったため,ステガノグラフィーのテキストをオリジナルのモデル生成テキストと効果的に整合させることが困難であった。
これにより、埋め込み能力が低下し、現実世界の通信チャネルでスチーゴを復号化するための課題が生じる。
これらの課題に対処するため,LLMに基づくセマンティック・ステガノグラフィー・フレームワークを提案する。
このフレームワークは複雑なチャネルでの送信に対して堅牢性と信頼性を提供し、テキストレンダリングやワードブロッキングに対する耐性を提供する。
さらに,本フレームワークが生成するステゴは表紙と区別不能であり,最先端のステガノグラフィ法に比べて高い埋込み能力を有しつつ,高品質なステゴを生産する。
関連論文リスト
- Decoding Diffusion: A Scalable Framework for Unsupervised Analysis of Latent Space Biases and Representations Using Natural Language Prompts [68.48103545146127]
本稿では拡散潜在空間の教師なし探索のための新しい枠組みを提案する。
我々は、自然言語のプロンプトと画像キャプションを直接利用して、遅延方向をマップする。
本手法は,拡散モデルに符号化された意味的知識をよりスケーラブルで解釈可能な理解を提供する。
論文 参考訳(メタデータ) (2024-10-25T21:44:51Z) - Unveiling Large Language Models Generated Texts: A Multi-Level Fine-Grained Detection Framework [9.976099891796784]
大型言語モデル (LLM) は文法の修正、内容の拡張、文体の改良によって人間の書き方を変えてきた。
既存の検出方法は、主に単一機能分析とバイナリ分類に依存しているが、学術的文脈においてLLM生成テキストを効果的に識別することができないことが多い。
低レベル構造, 高レベル意味, 深層言語的特徴を統合することで, LLM生成テキストを検出する多レベルきめ細粒度検出フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-18T07:25:00Z) - MFCLIP: Multi-modal Fine-grained CLIP for Generalizable Diffusion Face Forgery Detection [64.29452783056253]
フォトリアリスティック・フェイスジェネレーション手法の急速な発展は、社会やアカデミックにおいて大きな関心を集めている。
既存のアプローチは主に画像モダリティを用いて顔の偽造パターンをキャプチャするが、きめ細かいノイズやテキストのような他のモダリティは完全には探索されていない。
そこで本研究では,画像ノイズの多点にわたる包括的かつきめ細かなフォージェリートレースをマイニングする,MFCLIP(MF-modal Fine-fine-fine-fine-fine-fine CLIP)モデルを提案する。
論文 参考訳(メタデータ) (2024-09-15T13:08:59Z) - ARTIST: Improving the Generation of Text-rich Images with Disentangled Diffusion Models and Large Language Models [52.23899502520261]
本稿では,テキスト構造の学習に特化するために,専用のテキスト拡散モデルを組み込んだARTISTという新しいフレームワークを紹介する。
我々は、事前訓練されたテキスト構造モデルからテキスト構造情報を同化できるように、視覚拡散モデルを微調整する。
この歪んだアーキテクチャ設計とトレーニング戦略は、テキストリッチな画像生成のための拡散モデルのテキストレンダリング能力を著しく向上させる。
論文 参考訳(メタデータ) (2024-06-17T19:31:24Z) - Towards Next-Generation Steganalysis: LLMs Unleash the Power of Detecting Steganography [18.7168443402118]
言語ステガノグラフィーは、特にAI生成技術の出現と共に、メッセージを隠蔽するための便利な実装を提供する。
既存の手法は、記号統計学の側面から、ステガノグラフテキストと正規テキストの分布差を見つけることに限定されている。
本稿では,大規模言語モデル(LLM)のヒューマンライクなテキスト処理機能を用いて,人間の知覚との違いを実現することを提案する。
論文 参考訳(メタデータ) (2024-05-15T04:52:09Z) - Generative Text Steganography with Large Language Model [10.572149957139736]
LLM-Stegaと呼ばれる大規模言語モデルのユーザインタフェースに基づくブラックボックス生成テキストステガノグラフィー手法。
まず、キーワードセットを構築し、秘密メッセージを埋め込むための新しい暗号化されたステガノグラフマッピングを設計する。
総合的な実験により、LLM-Stegaは現在の最先端手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-04-16T02:19:28Z) - Learned representation-guided diffusion models for large-image generation [58.192263311786824]
自己教師型学習(SSL)からの埋め込みを条件とした拡散モデルを訓練する新しいアプローチを導入する。
我々の拡散モデルは、これらの特徴を高品質な病理組織学およびリモートセンシング画像に投影することに成功した。
実画像のバリエーションを生成して実データを増やすことにより、パッチレベルおよび大規模画像分類タスクの下流精度が向上する。
論文 参考訳(メタデータ) (2023-12-12T14:45:45Z) - Disentangled Representation Learning with Large Language Models for
Text-Attributed Graphs [57.052160123387104]
本稿では,TAGに対するLLMの推論と予測能力を向上させることができるDGTLモデルを提案する。
提案するDGTLモデルでは, グラフ構造情報をGNN層に組み込む。
実験により,提案したDGTLモデルにより,最先端のベースラインよりも優れた性能,あるいは同等の性能が得られることを示した。
論文 参考訳(メタデータ) (2023-10-27T14:00:04Z) - A Cheaper and Better Diffusion Language Model with Soft-Masked Noise [62.719656543880596]
Masked-Diffuse LMは言語モデリングのための新しい拡散モデルであり、言語の言語的特徴に触発されている。
具体的には,テキストデータのノイズを改善するために,戦略的ソフトマスキングによってテキストに劣化を加える言語情報処理を設計する。
我々は,我々のMasked-Diffuse LMが,高効率の最先端拡散モデルよりも優れた生成品質を達成できることを実証した。
論文 参考訳(メタデータ) (2023-04-10T17:58:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。