論文の概要: Dynamic Graph Attention Networks for Travel Time Distribution Prediction in Urban Arterial Roads
- arxiv url: http://arxiv.org/abs/2412.11095v1
- Date: Sun, 15 Dec 2024 07:30:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:56:02.571853
- Title: Dynamic Graph Attention Networks for Travel Time Distribution Prediction in Urban Arterial Roads
- Title(参考訳): 都市幹線道路における走行時間分布予測のための動的グラフ注意ネットワーク
- Authors: Nooshin Yousefzadeh, Rahul Sengupta, Sanjay Ranka,
- Abstract要約: 本研究では,動脈回廊沿いの両方向の走行時間分布を同時モデル化する構造的枠組みを提案する。
その結果, サイクル長, グリーンパーセンテージ, 交通密度, 反現実経路など, 効果的な交通変動に対するレジリエンスが示された。
このフレームワークは、動的信号タイミングをサポートし、混雑管理を強化し、現実世界のアプリケーションにおける走行時間の信頼性を向上させる。
- 参考スコア(独自算出の注目度): 5.849150965368483
- License:
- Abstract: Effective congestion management along signalized corridors is essential for improving productivity and reducing costs, with arterial travel time serving as a key performance metric. Traditional approaches, such as Coordinated Signal Timing and Adaptive Traffic Control Systems, often lack scalability and generalizability across diverse urban layouts. We propose Fusion-based Dynamic Graph Neural Networks (FDGNN), a structured framework for simultaneous modeling of travel time distributions in both directions along arterial corridors. FDGNN utilizes attentional graph convolution on dynamic, bidirectional graphs and integrates fusion techniques to capture evolving spatiotemporal traffic dynamics. The framework is trained on extensive hours of simulation data and utilizes GPU computation to ensure scalability. The results demonstrate that our framework can efficiently and accurately model travel time as a normal distribution on arterial roads leveraging a unique dynamic graph representation of corridor traffic states. This representation integrates sequential traffic signal timing plans, local driving behaviors, temporal turning movement counts, and ingress traffic volumes, even when aggregated over intervals as short as a single cycle length. The results demonstrate resilience to effective traffic variations, including cycle lengths, green time percentages, traffic density, and counterfactual routes. Results further confirm its stability under varying conditions at different intersections. This framework supports dynamic signal timing, enhances congestion management, and improves travel time reliability in real-world applications.
- Abstract(参考訳): 信号化回廊に沿った効果的な混雑管理は生産性の向上とコスト削減に不可欠であり、動脈走行時間が重要なパフォーマンス指標となる。
協調信号タイミング (Coordinated Signal Timing) や適応交通制御システム (Adaptive Traffic Control Systems) といった従来の手法は、様々な都市レイアウトのスケーラビリティと一般化性を欠いていることが多い。
動脈回廊沿いの両方向の走行時間分布を同時モデリングするための構造化フレームワークであるFusion-based Dynamic Graph Neural Networks (FDGNN)を提案する。
FDGNNは、動的に双方向なグラフに注意グラフの畳み込みを利用し、融合技術を統合して、時空間の時間的変動を捉える。
このフレームワークは、広範囲にわたるシミュレーションデータに基づいてトレーニングされており、GPU計算を使用してスケーラビリティを保証する。
その結果,道路交通状態の動的グラフ表現を生かした幹線道路の正規分布として,移動時間を効率的に,正確にモデル化できることが示唆された。
この表現は、1サイクル長の短い間隔で集約された場合でも、順次の交通信号タイミング計画、局所運転行動、時間回転数、入力トラフィック量を統合する。
その結果, サイクル長, グリーンタイムパーセンテージ, 交通密度, 反現実ルートなど, 効果的な交通変動に対するレジリエンスが示された。
結果は、異なる交差点における様々な条件下での安定性をさらに確認する。
このフレームワークは、動的信号タイミングをサポートし、混雑管理を強化し、現実世界のアプリケーションにおける走行時間の信頼性を向上させる。
関連論文リスト
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
本稿ではSGCN-LSTM(Signal-Enhanced Graph Convolutional Network Long Short Term Memory)モデルを提案する。
PEMS-BAYロードネットワークトラフィックデータセットの実験は、SGCN-LSTMモデルの有効性を示す。
論文 参考訳(メタデータ) (2024-11-01T00:37:00Z) - Temporal Graph Learning Recurrent Neural Network for Traffic Forecasting [27.20703077756038]
これらの問題に対処するため,TGLRN(Temporal Graph Learning Recurrent Neural Network)を提案する。
より正確には、時系列の性質を効果的にモデル化するために、リカレントニューラルネットワーク(RNN)を活用し、各ステップでグラフを動的に構築する。
実世界の4つのベンチマークデータセットの実験結果から, TGLRNの有効性が示された。
論文 参考訳(メタデータ) (2024-06-04T19:08:40Z) - Attention-based Dynamic Graph Convolutional Recurrent Neural Network for
Traffic Flow Prediction in Highway Transportation [0.6650227510403052]
高速道路交通における交通流予測を改善するために,注意に基づく動的グラフ畳み込みリカレントニューラルネットワーク(ADG-N)を提案する。
グラフ畳み込み演算のオーバーフィッティングを低減するために、高い相対ノードを強調する専用ゲートカーネルが完全なグラフ上に導入された。
論文 参考訳(メタデータ) (2023-09-13T13:57:21Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
空間時空間グラフニューラルネットワーク(GNN)モデルは、この問題を解決する最も有望な方法の1つである。
本稿では,交通流の正確な予測を行うために,遅延を意識した動的長距離トランスフォーマー(PDFormer)を提案する。
提案手法は,最先端の性能を達成するだけでなく,計算効率の競争力も発揮できる。
論文 参考訳(メタデータ) (2023-01-19T08:42:40Z) - STLGRU: Spatio-Temporal Lightweight Graph GRU for Traffic Flow
Prediction [0.40964539027092917]
本稿では,交通流を正確に予測する新しい交通予測モデルSTLGRUを提案する。
提案するSTLGRUは,交通ネットワークの局所的・大域的空間的関係を効果的に捉えることができる。
提案手法は,最先端の性能を達成するだけでなく,計算効率の競争力も発揮できる。
論文 参考訳(メタデータ) (2022-12-08T20:24:59Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
本稿では,Laplacian enhanced Low-rank tensor (LETC) フレームワークを提案する。
次に,提案したモデルをネットワークワイド・クリグにスケールアップするために,複数の有効な数値手法を用いて効率的な解アルゴリズムを設計する。
論文 参考訳(メタデータ) (2022-10-21T07:25:57Z) - D2-TPred: Discontinuous Dependency for Trajectory Prediction under
Traffic Lights [68.76631399516823]
本稿では,空間的動的相互作用グラフ(SDG)と行動依存グラフ(BDG)を用いて,交通信号に対する軌道予測手法D2-TPredを提案する。
実験の結果,VTP-TLではADEとFDEでそれぞれ20.45%,20.78%以上を達成できた。
論文 参考訳(メタデータ) (2022-07-21T10:19:07Z) - Spatial-Temporal Interactive Dynamic Graph Convolution Network for
Traffic Forecasting [1.52292571922932]
本稿では,トラフィック予測のためのニューラルネットワークを用いた時空間動的グラフ畳み込みネットワーク(STIDGCN)を提案する。
そこで,STIDGCNでは,まず間隔でシーケンスを分割し,同時にトラフィックデータの時空間依存性を捉えるインタラクティブな動的グラフ畳み込み構造を提案する。
4つの実世界のトラフィックフローデータセットの実験は、STIDGCNが最先端のベースラインより優れていることを示した。
論文 参考訳(メタデータ) (2022-05-18T01:59:30Z) - TSSRGCN: Temporal Spectral Spatial Retrieval Graph Convolutional Network
for Traffic Flow Forecasting [41.87633457352356]
本稿では,ネットワークのグローバル性と局所性に着目したニューラルネットワークモデルを提案する。
2つの実世界のデータセットの実験により、このモデルが交通データの空間的時間的相関を精査できることが示されている。
論文 参考訳(メタデータ) (2020-11-30T09:21:43Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
交通予測のための地理・長期時間グラフ畳み込み型ニューラルネットワーク(GLT-GCRNN)を提案する。
本研究では,地理的・長期的時間的パターンを共有する道路間のリッチな相互作用を学習する交通予測のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-23T03:50:46Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
本稿では,長期交通予測の精度を向上させるため,時空間変圧器ネットワーク(STTN)の新たなパラダイムを提案する。
具体的には、有向空間依存を動的にモデル化することにより、空間変換器と呼ばれる新しいグラフニューラルネットワークを提案する。
提案モデルにより,長期間にわたる空間的依存関係に対する高速かつスケーラブルなトレーニングが可能になる。
論文 参考訳(メタデータ) (2020-01-09T10:21:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。