Latent Reward: LLM-Empowered Credit Assignment in Episodic Reinforcement Learning
- URL: http://arxiv.org/abs/2412.11120v2
- Date: Thu, 09 Jan 2025 11:39:32 GMT
- Title: Latent Reward: LLM-Empowered Credit Assignment in Episodic Reinforcement Learning
- Authors: Yun Qu, Yuhang Jiang, Boyuan Wang, Yixiu Mao, Cheems Wang, Chang Liu, Xiangyang Ji,
- Abstract summary: We introduce LaRe, a novel LLM-empowered symbolic-based decision-making framework to improve credit assignment.
Key to LaRe is the concept of the Latent Reward, which works as a multi-dimensional performance evaluation.
LaRe achieves superior temporal credit assignment to SOTA methods, (ii) excels in allocating contributions among multiple agents, and (iii) outperforms policies trained with ground truth rewards for certain tasks.
- Score: 45.30569353687124
- License:
- Abstract: Reinforcement learning (RL) often encounters delayed and sparse feedback in real-world applications, even with only episodic rewards. Previous approaches have made some progress in reward redistribution for credit assignment but still face challenges, including training difficulties due to redundancy and ambiguous attributions stemming from overlooking the multifaceted nature of mission performance evaluation. Hopefully, Large Language Model (LLM) encompasses fruitful decision-making knowledge and provides a plausible tool for reward redistribution. Even so, deploying LLM in this case is non-trivial due to the misalignment between linguistic knowledge and the symbolic form requirement, together with inherent randomness and hallucinations in inference. To tackle these issues, we introduce LaRe, a novel LLM-empowered symbolic-based decision-making framework, to improve credit assignment. Key to LaRe is the concept of the Latent Reward, which works as a multi-dimensional performance evaluation, enabling more interpretable goal attainment from various perspectives and facilitating more effective reward redistribution. We examine that semantically generated code from LLM can bridge linguistic knowledge and symbolic latent rewards, as it is executable for symbolic objects. Meanwhile, we design latent reward self-verification to increase the stability and reliability of LLM inference. Theoretically, reward-irrelevant redundancy elimination in the latent reward benefits RL performance from more accurate reward estimation. Extensive experimental results witness that LaRe (i) achieves superior temporal credit assignment to SOTA methods, (ii) excels in allocating contributions among multiple agents, and (iii) outperforms policies trained with ground truth rewards for certain tasks.
Related papers
- Beyond Simple Sum of Delayed Rewards: Non-Markovian Reward Modeling for Reinforcement Learning [44.770495418026734]
Reinforcement Learning (RL) empowers agents to acquire various skills by learning from reward signals.
Traditional methods assume the existence of underlying Markovian rewards and that the observed delayed reward is simply the sum of instance-level rewards.
We propose Composite Delayed Reward Transformer (CoDeTr), which incorporates a specialized in-sequence attention mechanism.
arXiv Detail & Related papers (2024-10-26T13:12:27Z) - Insights from the Inverse: Reconstructing LLM Training Goals Through Inverse RL [7.988692259455583]
Large language models (LLMs) trained with Reinforcement Learning from Human Feedback have demonstrated remarkable capabilities, but their underlying reward functions and decision-making processes remain opaque.
This paper introduces a novel approach to interpreting LLMs by applying inverse reinforcement learning (IRL) to recover their implicit reward functions.
We conduct experiments on toxicity-aligned LLMs of varying sizes, extracting reward models that achieve up to 80.40% accuracy in predicting human preferences.
arXiv Detail & Related papers (2024-10-16T12:14:25Z) - VinePPO: Unlocking RL Potential For LLM Reasoning Through Refined Credit Assignment [66.80143024475635]
We propose VinePPO, a straightforward approach to compute unbiased Monte Carlo-based estimates.
We show that VinePPO consistently outperforms PPO and other RL-free baselines across MATH and GSM8K datasets.
arXiv Detail & Related papers (2024-10-02T15:49:30Z) - Assessing the Zero-Shot Capabilities of LLMs for Action Evaluation in RL [14.091146805312636]
Credit assignment problem is a central challenge in Reinforcement Learning (RL)
Credit Assignment with Language Models (CALM) is a novel approach to automate credit assignment via reward shaping and options discovery.
Preliminary results indicate that the knowledge of Large Language Models is a promising prior for credit assignment in RL.
arXiv Detail & Related papers (2024-09-19T14:08:09Z) - Extracting Heuristics from Large Language Models for Reward Shaping in Reinforcement Learning [28.077228879886402]
Reinforcement Learning (RL) suffers from sample inefficiency in reward domains, and the problem is further pronounced in case of transitions.
To improve the sample efficiency, reward shaping is a well-studied approach to introduce intrinsic rewards that can help the RL agent converge to an optimal policy faster.
arXiv Detail & Related papers (2024-05-24T03:53:57Z) - Countering Reward Over-optimization in LLM with Demonstration-Guided Reinforcement Learning [49.87923965553233]
Reinforcement Learning can lead to reward over-optimization in large language models.
We introduce the Reward from Demonstration (RCfD) to recalibrate the reward objective.
We show that RCfD achieves comparable performance to carefully tuned baselines while mitigating ROO.
arXiv Detail & Related papers (2024-04-30T09:57:21Z) - Dense Reward for Free in Reinforcement Learning from Human Feedback [64.92448888346125]
We leverage the fact that the reward model contains more information than just its scalar output.
We use these attention weights to redistribute the reward along the whole completion.
Empirically, we show that it stabilises training, accelerates the rate of learning, and, in practical cases, may lead to better local optima.
arXiv Detail & Related papers (2024-02-01T17:10:35Z) - Language Reward Modulation for Pretraining Reinforcement Learning [61.76572261146311]
We propose leveraging the capabilities of LRFs as a pretraining signal for reinforcement learning.
Our VLM pretraining approach, which is a departure from previous attempts to use LRFs, can warmstart sample-efficient learning on robot manipulation tasks.
arXiv Detail & Related papers (2023-08-23T17:37:51Z) - Semantically Aligned Task Decomposition in Multi-Agent Reinforcement
Learning [56.26889258704261]
We propose a novel "disentangled" decision-making method, Semantically Aligned task decomposition in MARL (SAMA)
SAMA prompts pretrained language models with chain-of-thought that can suggest potential goals, provide suitable goal decomposition and subgoal allocation as well as self-reflection-based replanning.
SAMA demonstrates considerable advantages in sample efficiency compared to state-of-the-art ASG methods.
arXiv Detail & Related papers (2023-05-18T10:37:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.