論文の概要: The Superalignment of Superhuman Intelligence with Large Language Models
- arxiv url: http://arxiv.org/abs/2412.11145v2
- Date: Mon, 23 Dec 2024 05:29:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 22:39:33.198663
- Title: The Superalignment of Superhuman Intelligence with Large Language Models
- Title(参考訳): 大規模言語モデルを用いた超人的知能のスーパーアライメント
- Authors: Minlie Huang, Yingkang Wang, Shiyao Cui, Pei Ke, Jie Tang,
- Abstract要約: 我々は,この疑問に答えるために,学習の観点からスーパーアライメントの概念について議論する。
スーパーアライメントにおけるいくつかの重要な研究課題、すなわち、弱いから強い一般化、スケーラブルな監視、評価に焦点を当てる。
本稿では,学習者モデルの弱点を露呈しようとする敵対的クエリを生成する攻撃者,最小限の人間専門家とともに,批判モデルによって生成されたスケーラブルなフィードバックから学習することで自己を洗練させる学習者,与えられた質問応答対に対する批判や説明を生成する批判者,そして批判によって学習者を改善することを目的とした,3つのモジュールからなるスーパーアライメントの概念的枠組みを提案する。
- 参考スコア(独自算出の注目度): 63.96120398355404
- License:
- Abstract: We have witnessed superhuman intelligence thanks to the fast development of large language models and multimodal language models. As the application of such superhuman models becomes more and more popular, a critical question arises here: how can we ensure superhuman models are still safe, reliable and aligned well to human values? In this position paper, we discuss the concept of superalignment from the learning perspective to answer this question by outlining the learning paradigm shift from large-scale pretraining, supervised fine-tuning, to alignment training. We define superalignment as designing effective and efficient alignment algorithms to learn from noisy-labeled data (point-wise samples or pair-wise preference data) in a scalable way when the task becomes very complex for human experts to annotate and the model is stronger than human experts. We highlight some key research problems in superalignment, namely, weak-to-strong generalization, scalable oversight, and evaluation. We then present a conceptual framework for superalignment, which consists of three modules: an attacker which generates adversary queries trying to expose the weaknesses of a learner model; a learner which will refine itself by learning from scalable feedbacks generated by a critic model along with minimal human experts; and a critic which generates critics or explanations for a given query-response pair, with a target of improving the learner by criticizing. We discuss some important research problems in each component of this framework and highlight some interesting research ideas that are closely related to our proposed framework, for instance, self-alignment, self-play, self-refinement, and more. Last, we highlight some future research directions for superalignment, including identification of new emergent risks and multi-dimensional alignment.
- Abstract(参考訳): 我々は,大規模言語モデルと多モーダル言語モデルの急速な発展により,超人的知能を目撃してきた。
このような超人的モデルの適用がますます広まりつつある中で、重要な疑問が浮かび上がっている。
本稿では,大規模事前学習から教師付き微調整,アライメントトレーニングへの学習パラダイムシフトを概説することにより,学習の観点からのスーパーアライメントの概念について議論する。
我々は,タスクがアノテートが非常に複雑になり,モデルが人間の専門家より強い場合に,ノイズの多いラベル付きデータ(ポイントワイドサンプルやペアワイド嗜好データ)から学習するための,効率的で効率的なアライメントアルゴリズムを設計するものとして定義する。
スーパーアライメントにおけるいくつかの重要な研究課題、すなわち、弱いから強い一般化、スケーラブルな監視、評価に焦点を当てる。
そこで我々は,学習者のモデルの弱点を露呈しようとする敵対的クエリを生成するアタッカーと,最小限の人間専門家とともに,批評家モデルによって生成されたスケーラブルなフィードバックから学習することで,自分自身を洗練させる学習者と,与えられた質問応答対に対する批判や説明を生成する批判者と,学習者の改善を目標とする3つのモジュールからなるスーパーアライメントの概念的枠組みを提案する。
本稿では,本フレームワークの各コンポーネントにおける重要な研究課題について論じるとともに,提案フレームワークと密接に関連している,例えば,自己アライメント,自己プレイ,自己リファインメントなど,興味深い研究思想を紹介する。
最後に,新たな創発的リスクの同定や多次元アライメントなど,スーパーアライメントの今後の研究方向性について述べる。
関連論文リスト
- Weak-to-Strong Generalization beyond Accuracy: a Pilot Study in Safety, Toxicity, and Legal Reasoning [10.752609242505953]
従来のアライメント手法は、微調整モデルへの人間のフィードバックに依存している。
人間の理解を超越したアウトプットを持つ超人的モデルには、大きな課題がある。
近年の研究では、より強力なモデルから知識を引き出すために弱いスーパーバイザーを使用している。
論文 参考訳(メタデータ) (2024-10-16T14:40:32Z) - Coding for Intelligence from the Perspective of Category [66.14012258680992]
符号化の対象はデータの圧縮と再構成、インテリジェンスである。
最近の傾向は、これらの2つの分野の潜在的均一性を示している。
本稿では,カテゴリ理論の観点から,インテリジェンスのためのコーディングの新たな問題を提案する。
論文 参考訳(メタデータ) (2024-07-01T07:05:44Z) - Heterogeneous Contrastive Learning for Foundation Models and Beyond [73.74745053250619]
ビッグデータと人工知能の時代において、新しいパラダイムは、大規模な異種データをモデル化するために、対照的な自己教師付き学習を活用することである。
本調査は基礎モデルの異種コントラスト学習の現況を批判的に評価する。
論文 参考訳(メタデータ) (2024-03-30T02:55:49Z) - OlaGPT: Empowering LLMs With Human-like Problem-Solving Abilities [19.83434949066066]
本稿では,OlaGPTと呼ばれる新しいインテリジェントなフレームワークを紹介する。
OlaGPTは認知アーキテクチャの枠組みを慎重に研究し、人間の認知の特定の側面をシミュレートすることを提案する。
このフレームワークは、注意、記憶、推論、学習、および対応するスケジューリングと意思決定メカニズムを含む、異なる認知モジュールの近似を含む。
論文 参考訳(メタデータ) (2023-05-23T09:36:51Z) - A Framework for Understanding Model Extraction Attack and Defense [48.421636548746704]
我々は,モデルユーティリティとユーザとのトレードオフと,敵の視点によるプライバシについて検討する。
我々は,このようなトレードオフを定量化し,その理論的特性を分析し,最適な敵攻撃・防衛戦略を理解するための最適化問題を開発する。
論文 参考訳(メタデータ) (2022-06-23T05:24:52Z) - Causal Reasoning Meets Visual Representation Learning: A Prospective
Study [117.08431221482638]
解釈可能性の欠如、堅牢性、分布外一般化が、既存の視覚モデルの課題となっている。
人間レベルのエージェントの強い推論能力にインスパイアされた近年では、因果推論パラダイムの開発に多大な努力が注がれている。
本稿では,この新興分野を包括的に概観し,注目し,議論を奨励し,新たな因果推論手法の開発の急激さを先導することを目的とする。
論文 参考訳(メタデータ) (2022-04-26T02:22:28Z) - Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of
Language Models [86.02610674750345]
AdvGLUE(Adversarial GLUE)は、様々な種類の敵攻撃の下で、現代の大規模言語モデルの脆弱性を調査し評価するための新しいマルチタスクベンチマークである。
GLUEタスクに14の逆攻撃手法を適用してAdvGLUEを構築する。
テストしたすべての言語モデルとロバストなトレーニングメソッドは、AdvGLUEではパフォーマンスが悪く、スコアは明確な精度よりもはるかに遅れています。
論文 参考訳(メタデータ) (2021-11-04T12:59:55Z) - Plausible Counterfactuals: Auditing Deep Learning Classifiers with
Realistic Adversarial Examples [84.8370546614042]
ディープラーニングモデルのブラックボックスの性質は、彼らがデータから何を学ぶかについて、未回答の疑問を提起している。
GAN(Generative Adversarial Network)とマルチオブジェクトは、監査されたモデルに妥当な攻撃を与えるために使用される。
その実用性は人間の顔の分類タスクの中で示され、提案されたフレームワークの潜在的可能性を明らかにしている。
論文 参考訳(メタデータ) (2020-03-25T11:08:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。