From Easy to Hard: Progressive Active Learning Framework for Infrared Small Target Detection with Single Point Supervision
- URL: http://arxiv.org/abs/2412.11154v1
- Date: Sun, 15 Dec 2024 11:08:49 GMT
- Title: From Easy to Hard: Progressive Active Learning Framework for Infrared Small Target Detection with Single Point Supervision
- Authors: Chuang Yu, Jinmiao Zhao, Yunpeng Liu, Sicheng Zhao, Xiangyu Yue,
- Abstract summary: Single-frame infrared small target (SIRST) detection with single point supervision has drawn wide-spread attention.
We construct a Progressive Active Learning (PAL) framework, inspired by organisms gradually adapting to their environment.
Our PAL framework can build a efficient and stable bridge between full supervision and point supervision tasks.
- Score: 19.661685949606543
- License:
- Abstract: Recently, single-frame infrared small target (SIRST) detection with single point supervision has drawn wide-spread attention. However, the latest label evolution with single point supervision (LESPS) framework suffers from instability, excessive label evolution, and difficulty in exerting embedded network performance. Therefore, we construct a Progressive Active Learning (PAL) framework. Specifically, inspired by organisms gradually adapting to their environment and continuously accumulating knowledge, we propose an innovative progressive active learning idea, which emphasizes that the network progressively and actively recognizes and learns more hard samples to achieve continuous performance enhancement. Based on this, on the one hand, we propose a model pre-start concept, which focuses on selecting a portion of easy samples and can help models have basic task-specific learning capabilities. On the other hand, we propose a refined dual-update strategy, which can promote reasonable learning of harder samples and continuous refinement of pseudo-labels. In addition, to alleviate the risk of excessive label evolution, a decay factor is reasonably introduced, which helps to achieve a dynamic balance between the expansion and contraction of target annotations. Extensive experiments show that convolutional neural networks (CNNs) equipped with our PAL framework have achieved state-of-the-art (SOTA) results on multiple public datasets. Furthermore, our PAL framework can build a efficient and stable bridge between full supervision and point supervision tasks. Our code are available at https://github.com/YuChuang1205/PAL.
Related papers
- CODE-CL: COnceptor-Based Gradient Projection for DEep Continual Learning [7.573297026523597]
We introduce COnceptor-based gradient projection for DEep Continual Learning (CODE-CL)
CODE-CL encodes directional importance within the input space of past tasks, allowing new knowledge integration in directions modulated by $1-S$.
We analyze task overlap using conceptor-based representations to identify highly correlated tasks.
arXiv Detail & Related papers (2024-11-21T22:31:06Z) - ACTRESS: Active Retraining for Semi-supervised Visual Grounding [52.08834188447851]
A previous study, RefTeacher, makes the first attempt to tackle this task by adopting the teacher-student framework to provide pseudo confidence supervision and attention-based supervision.
This approach is incompatible with current state-of-the-art visual grounding models, which follow the Transformer-based pipeline.
Our paper proposes the ACTive REtraining approach for Semi-Supervised Visual Grounding, abbreviated as ACTRESS.
arXiv Detail & Related papers (2024-07-03T16:33:31Z) - Unsupervised Spatial-Temporal Feature Enrichment and Fidelity
Preservation Network for Skeleton based Action Recognition [20.07820929037547]
Unsupervised skeleton based action recognition has achieved remarkable progress recently.
Existing unsupervised learning methods suffer from severe overfitting problem.
This paper presents an Unsupervised spatial-temporal Feature Enrichment and Fidelity Preservation framework to generate rich distributed features.
arXiv Detail & Related papers (2024-01-25T09:24:07Z) - Enhancing Infrared Small Target Detection Robustness with Bi-Level
Adversarial Framework [61.34862133870934]
We propose a bi-level adversarial framework to promote the robustness of detection in the presence of distinct corruptions.
Our scheme remarkably improves 21.96% IOU across a wide array of corruptions and notably promotes 4.97% IOU on the general benchmark.
arXiv Detail & Related papers (2023-09-03T06:35:07Z) - Unsupervised Meta-Learning via Few-shot Pseudo-supervised Contrastive
Learning [72.3506897990639]
We propose a simple yet effective unsupervised meta-learning framework, coined Pseudo-supervised Contrast (PsCo) for few-shot classification.
PsCo outperforms existing unsupervised meta-learning methods under various in-domain and cross-domain few-shot classification benchmarks.
arXiv Detail & Related papers (2023-03-02T06:10:13Z) - Learning Transferable Adversarial Robust Representations via Multi-view
Consistency [57.73073964318167]
We propose a novel meta-adversarial multi-view representation learning framework with dual encoders.
We demonstrate the effectiveness of our framework on few-shot learning tasks from unseen domains.
arXiv Detail & Related papers (2022-10-19T11:48:01Z) - A Weakly Supervised Learning Framework for Salient Object Detection via
Hybrid Labels [96.56299163691979]
This paper focuses on a new weakly-supervised salient object detection (SOD) task under hybrid labels.
To address the issues of label noise and quantity imbalance in this task, we design a new pipeline framework with three sophisticated training strategies.
Experiments on five SOD benchmarks show that our method achieves competitive performance against weakly-supervised/unsupervised methods.
arXiv Detail & Related papers (2022-09-07T06:45:39Z) - Activation to Saliency: Forming High-Quality Labels for Unsupervised
Salient Object Detection [54.92703325989853]
We propose a two-stage Activation-to-Saliency (A2S) framework that effectively generates high-quality saliency cues.
No human annotations are involved in our framework during the whole training process.
Our framework reports significant performance compared with existing USOD methods.
arXiv Detail & Related papers (2021-12-07T11:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.