論文の概要: Missing data imputation for noisy time-series data and applications in healthcare
- arxiv url: http://arxiv.org/abs/2412.11164v1
- Date: Sun, 15 Dec 2024 12:23:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:54:39.165596
- Title: Missing data imputation for noisy time-series data and applications in healthcare
- Title(参考訳): 医療におけるノイズの多い時系列データと応用のためのデータ計算の欠如
- Authors: Lien P. Le, Xuan-Hien Nguyen Thi, Thu Nguyen, Michael A. Riegler, Pål Halvorsen, Binh T. Nguyen,
- Abstract要約: インパテーション(英: Imputation、すなわち、欠落した値を埋めること)は、ノイズの多い時系列データを扱う一般的な方法である。
本研究では,MICE-RF(Multiple Imputation with Random Forest)や先進的な深層学習アプローチなどの計算手法を比較した。
この結果から,MICE-RFは深層学習法と比較して,欠落したデータを効果的にインプットできることが示唆された。
- 参考スコア(独自算出の注目度): 5.586166090905021
- License:
- Abstract: Healthcare time series data is vital for monitoring patient activity but often contains noise and missing values due to various reasons such as sensor errors or data interruptions. Imputation, i.e., filling in the missing values, is a common way to deal with this issue. In this study, we compare imputation methods, including Multiple Imputation with Random Forest (MICE-RF) and advanced deep learning approaches (SAITS, BRITS, Transformer) for noisy, missing time series data in terms of MAE, F1-score, AUC, and MCC, across missing data rates (10 % - 80 %). Our results show that MICE-RF can effectively impute missing data compared to deep learning methods and the improvement in classification of data imputed indicates that imputation can have denoising effects. Therefore, using an imputation algorithm on time series with missing data can, at the same time, offer denoising effects.
- Abstract(参考訳): 医療時系列データは患者の活動を監視するのに不可欠であるが、センサーエラーやデータ中断といった様々な理由でノイズや欠落した値を含むことが多い。
計算(Imputation)、すなわち、欠落した値を満たすことは、この問題に対処する一般的な方法である。
本研究では,MICE-RF(Multiple Imputation with Random Forest)や高度な深層学習手法(SAITS, BRITS, Transformer)をノイズに対して比較し,MAE,F1スコア,AUC,MCCの時系列データを欠落データ率(10%~80%)で比較した。
以上の結果から,MICE-RFは深層学習法と比較して,欠落データを効果的に含意できることを示すとともに,有意なデータ分類の改善により,減音効果がもたらされることが示唆された。
したがって、データ不足の時系列上の計算アルゴリズムを使用することで、デノゲーション効果がもたらされる可能性がある。
関連論文リスト
- DiffImpute: Tabular Data Imputation With Denoising Diffusion Probabilistic Model [9.908561639396273]
DiffImputeという新しい拡散確率モデル(DDPM)を提案する。
既存のデータの信頼性を損なうことなく、欠落したエントリに対して信頼できる警告を生成する。
Missing Completely At Random (MCAR) と Missing At Random (MAR) の様々な設定に適用できる。
論文 参考訳(メタデータ) (2024-03-20T08:45:31Z) - On the Performance of Imputation Techniques for Missing Values on Healthcare Datasets [0.0]
値やデータの欠落は、実世界のデータセット、特に医療データの一般的な特徴のひとつだ。
本研究は, 平均計算法, 中間計算法, 最終観測法 (LOCF) 計算法, K-Nearest Neighbor (KNN) 計算法, 補間計算法, ミスフォレスト計算法, 連鎖方程式による多重計算法の比較である。
その結果,ミスフォレスト・インキュベーションが最善であり,MICEインキュベーションが最善であることがわかった。
論文 参考訳(メタデータ) (2024-03-13T18:07:17Z) - Stochastic Amortization: A Unified Approach to Accelerate Feature and Data Attribution [62.71425232332837]
雑音ラベル付きモデルを用いたトレーニングは安価で驚くほど効果的であることを示す。
このアプローチは、いくつかの特徴属性とデータ評価手法を著しく加速し、しばしば既存のアプローチよりも桁違いにスピードアップする。
論文 参考訳(メタデータ) (2024-01-29T03:42:37Z) - Robust T-Loss for Medical Image Segmentation [56.524774292536264]
本稿では,医用画像分割のための新しいロバストな損失関数T-Lossを提案する。
提案した損失は、Student-t分布の負のログ類似度に基づいており、データ内の外れ値の処理を効果的に行うことができる。
実験の結果,T-Lossは2つの医療データセットのダイススコアにおいて従来の損失関数よりも優れていた。
論文 参考訳(メタデータ) (2023-06-01T14:49:40Z) - Filling out the missing gaps: Time Series Imputation with
Semi-Supervised Learning [7.8379910349669]
本稿では,ラベルなしデータと下流タスクのラベル付きデータの両方を利用する半教師付き計算手法ST-Imputeを提案する。
ST-Imputeはスパース自己注意に基づいており、計算過程を模倣するタスクを訓練する。
論文 参考訳(メタデータ) (2023-04-09T16:38:47Z) - A robust deep learning-based damage identification approach for SHM
considering missing data [12.46223206282221]
欠落したデータは構造的健康モニタリング法の伝導に大きな影響を及ぼす。
本稿では,欠落したデータ事例を考慮に入れたロバストな損傷識別手法を提案する。
その結果、欠落したデータ計算と損傷識別を併用できることが判明した。
論文 参考訳(メタデータ) (2023-03-31T18:00:56Z) - Deep Imputation of Missing Values in Time Series Health Data: A Review
with Benchmarking [0.0]
この調査では,5つの時系列健康データセットに対して,最先端の深層計算手法をベンチマークするために,データ中心の6つの実験を行った。
時系列データにおける欠落した値の縦方向の計算と横方向の計算を共同で行う深層学習法は、従来の計算法よりも統計的に優れたデータ品質が得られる。
論文 参考訳(メタデータ) (2023-02-10T16:03:36Z) - Improving the Robustness of Summarization Models by Detecting and
Removing Input Noise [50.27105057899601]
本研究では,様々な種類の入力ノイズから,様々なデータセットやモデルサイズに対する性能損失を定量化する大規模な実験的検討を行った。
本稿では,モデル推論中の入力中のそのようなノイズを検出し,除去するための軽量な手法を提案する。
論文 参考訳(メタデータ) (2022-12-20T00:33:11Z) - DynImp: Dynamic Imputation for Wearable Sensing Data Through Sensory and
Temporal Relatedness [78.98998551326812]
従来の手法では、データの時系列ダイナミクスと、異なるセンサーの特徴の関連性の両方をめったに利用していない、と我々は主張する。
我々はDynImpと呼ばれるモデルを提案し、特徴軸に沿って近接する隣人と異なる時間点の欠如を扱う。
本手法は, 関連センサのマルチモーダル性特性を活かし, 履歴時系列のダイナミックスから学習し, 極端に欠落した状態でデータを再構築することができることを示す。
論文 参考訳(メタデータ) (2022-09-26T21:59:14Z) - MissDAG: Causal Discovery in the Presence of Missing Data with
Continuous Additive Noise Models [78.72682320019737]
不完全な観測データから因果発見を行うため,MissDAGと呼ばれる一般的な手法を開発した。
MissDAGは、期待-最大化の枠組みの下で観測の可視部分の期待される可能性を最大化する。
各種因果探索アルゴリズムを組み込んだMissDAGの柔軟性について,広範囲なシミュレーションと実データ実験により検証した。
論文 参考訳(メタデータ) (2022-05-27T09:59:46Z) - Multi-Source Causal Inference Using Control Variates [81.57072928775509]
本稿では,複数のデータソースから因果効果を推定するアルゴリズムを提案する。
理論的には、これはATE推定値の分散を減少させる。
このフレームワークを結果選択バイアスの下で観測データからの推論に適用する。
論文 参考訳(メタデータ) (2021-03-30T21:20:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。