ViPOcc: Leveraging Visual Priors from Vision Foundation Models for Single-View 3D Occupancy Prediction
- URL: http://arxiv.org/abs/2412.11210v2
- Date: Fri, 10 Jan 2025 07:26:43 GMT
- Title: ViPOcc: Leveraging Visual Priors from Vision Foundation Models for Single-View 3D Occupancy Prediction
- Authors: Yi Feng, Yu Han, Xijing Zhang, Tanghui Li, Yanting Zhang, Rui Fan,
- Abstract summary: In this paper, we propose ViPOcc, which leverages the visual priors from vision foundation models for fine-grained 3D occupancy prediction.
We also propose a semantic-guided non-overlapping Gaussian mixture sampler for efficient, instance-aware ray sampling.
Our experiments demonstrate the superior performance of ViPOcc in both 3D occupancy prediction and depth estimation tasks.
- Score: 11.312780421161204
- License:
- Abstract: Inferring the 3D structure of a scene from a single image is an ill-posed and challenging problem in the field of vision-centric autonomous driving. Existing methods usually employ neural radiance fields to produce voxelized 3D occupancy, lacking instance-level semantic reasoning and temporal photometric consistency. In this paper, we propose ViPOcc, which leverages the visual priors from vision foundation models (VFMs) for fine-grained 3D occupancy prediction. Unlike previous works that solely employ volume rendering for RGB and depth image reconstruction, we introduce a metric depth estimation branch, in which an inverse depth alignment module is proposed to bridge the domain gap in depth distribution between VFM predictions and the ground truth. The recovered metric depth is then utilized in temporal photometric alignment and spatial geometric alignment to ensure accurate and consistent 3D occupancy prediction. Additionally, we also propose a semantic-guided non-overlapping Gaussian mixture sampler for efficient, instance-aware ray sampling, which addresses the redundant and imbalanced sampling issue that still exists in previous state-of-the-art methods. Extensive experiments demonstrate the superior performance of ViPOcc in both 3D occupancy prediction and depth estimation tasks on the KITTI-360 and KITTI Raw datasets. Our code is available at: \url{https://mias.group/ViPOcc}.
Related papers
- How to Use Diffusion Priors under Sparse Views? [29.738350228085928]
Inline Prior Guided Score Matching is proposed to provide visual supervision over sparse views in 3D reconstruction.
We show that our method achieves state-of-the-art reconstruction quality.
arXiv Detail & Related papers (2024-12-03T07:31:54Z) - GEOcc: Geometrically Enhanced 3D Occupancy Network with Implicit-Explicit Depth Fusion and Contextual Self-Supervision [49.839374549646884]
This paper presents GEOcc, a Geometric-Enhanced Occupancy network tailored for vision-only surround-view perception.
Our approach achieves State-Of-The-Art performance on the Occ3D-nuScenes dataset with the least image resolution needed and the most weightless image backbone.
arXiv Detail & Related papers (2024-05-17T07:31:20Z) - RadOcc: Learning Cross-Modality Occupancy Knowledge through Rendering
Assisted Distillation [50.35403070279804]
3D occupancy prediction is an emerging task that aims to estimate the occupancy states and semantics of 3D scenes using multi-view images.
We propose RadOcc, a Rendering assisted distillation paradigm for 3D Occupancy prediction.
arXiv Detail & Related papers (2023-12-19T03:39:56Z) - OccNeRF: Advancing 3D Occupancy Prediction in LiDAR-Free Environments [77.0399450848749]
We propose an OccNeRF method for training occupancy networks without 3D supervision.
We parameterize the reconstructed occupancy fields and reorganize the sampling strategy to align with the cameras' infinite perceptive range.
For semantic occupancy prediction, we design several strategies to polish the prompts and filter the outputs of a pretrained open-vocabulary 2D segmentation model.
arXiv Detail & Related papers (2023-12-14T18:58:52Z) - Parametric Depth Based Feature Representation Learning for Object
Detection and Segmentation in Bird's Eye View [44.78243406441798]
This paper focuses on leveraging geometry information, such as depth, to model such feature transformation.
We first lift the 2D image features to the 3D space defined for the ego vehicle via a predicted parametric depth distribution for each pixel in each view.
We then aggregate the 3D feature volume based on the 3D space occupancy derived from depth to the BEV frame.
arXiv Detail & Related papers (2023-07-09T06:07:22Z) - Towards Domain Generalization for Multi-view 3D Object Detection in
Bird-Eye-View [11.958753088613637]
We first analyze the causes of the domain gap for the MV3D-Det task.
To acquire a robust depth prediction, we propose to decouple the depth estimation from intrinsic parameters of the camera.
We modify the focal length values to create multiple pseudo-domains and construct an adversarial training loss to encourage the feature representation to be more domain-agnostic.
arXiv Detail & Related papers (2023-03-03T02:59:13Z) - 3DVNet: Multi-View Depth Prediction and Volumetric Refinement [68.68537312256144]
3DVNet is a novel multi-view stereo (MVS) depth-prediction method.
Our key idea is the use of a 3D scene-modeling network that iteratively updates a set of coarse depth predictions.
We show that our method exceeds state-of-the-art accuracy in both depth prediction and 3D reconstruction metrics.
arXiv Detail & Related papers (2021-12-01T00:52:42Z) - Probabilistic and Geometric Depth: Detecting Objects in Perspective [78.00922683083776]
3D object detection is an important capability needed in various practical applications such as driver assistance systems.
Monocular 3D detection, as an economical solution compared to conventional settings relying on binocular vision or LiDAR, has drawn increasing attention recently but still yields unsatisfactory results.
This paper first presents a systematic study on this problem and observes that the current monocular 3D detection problem can be simplified as an instance depth estimation problem.
arXiv Detail & Related papers (2021-07-29T16:30:33Z) - Depth-conditioned Dynamic Message Propagation for Monocular 3D Object
Detection [86.25022248968908]
We learn context- and depth-aware feature representation to solve the problem of monocular 3D object detection.
We show state-of-the-art results among the monocular-based approaches on the KITTI benchmark dataset.
arXiv Detail & Related papers (2021-03-30T16:20:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.