Image Forgery Localization with State Space Models
- URL: http://arxiv.org/abs/2412.11214v2
- Date: Fri, 14 Feb 2025 06:25:16 GMT
- Title: Image Forgery Localization with State Space Models
- Authors: Zijie Lou, Gang Cao, Kun Guo, Shaowei Weng, Lifang Yu,
- Abstract summary: We propose LoMa, a novel image forgery localization method that leverages the selective SSMs.
LoMa employs atrous selective scan to traverse the spatial domain and convert the tampered image into ordered patch sequences.
This is the first image forgery localization model constructed based on the SSM-based model.
- Score: 6.6222439382291
- License:
- Abstract: Pixel dependency modeling from tampered images is pivotal for image forgery localization. Current approaches predominantly rely on Convolutional Neural Networks (CNNs) or Transformer-based models, which often either lack sufficient receptive fields or entail significant computational overheads. Recently, State Space Models (SSMs), exemplified by Mamba, have emerged as a promising approach. They not only excel in modeling long-range interactions but also maintain a linear computational complexity. In this paper, we propose LoMa, a novel image forgery localization method that leverages the selective SSMs. Specifically, LoMa initially employs atrous selective scan to traverse the spatial domain and convert the tampered image into ordered patch sequences, and subsequently applies multi-directional state space modeling. In addition, an auxiliary convolutional branch is introduced to enhance local feature extraction. Extensive experimental results validate the superiority of LoMa over CNN-based and Transformer-based state-of-the-arts. To our best knowledge, this is the first image forgery localization model constructed based on the SSM-based model. We aim to establish a baseline and provide valuable insights for the future development of more efficient and effective SSM-based forgery localization models. Code is available at https://github.com/multimediaFor/LoMa.
Related papers
- DAMamba: Vision State Space Model with Dynamic Adaptive Scan [51.81060691414399]
State space models (SSMs) have recently garnered significant attention in computer vision.
We propose Dynamic Adaptive Scan (DAS), a data-driven method that adaptively allocates scanning orders and regions.
Based on DAS, we propose the vision backbone DAMamba, which significantly outperforms current state-of-the-art vision Mamba models in vision tasks.
arXiv Detail & Related papers (2025-02-18T08:12:47Z) - Mamba2D: A Natively Multi-Dimensional State-Space Model for Vision Tasks [47.49096400786856]
State-Space Models (SSMs) have recently emerged as a powerful and efficient alternative to the long-standing transformer architecture.
We re-deriving modern selective state-space techniques, starting from a multidimensional formulation.
Mamba2D shows comparable performance to prior adaptations of SSMs for vision tasks, on standard image classification evaluations with the ImageNet-1K dataset.
arXiv Detail & Related papers (2024-12-20T18:50:36Z) - SEM-Net: Efficient Pixel Modelling for image inpainting with Spatially Enhanced SSM [11.447968918063335]
Image inpainting aims to repair a partially damaged image based on the information from known regions of the images.
SEM-Net is a novel visual State Space model (SSM) vision network, modelling corrupted images at the pixel level while capturing long-range dependencies (LRDs) in state space.
arXiv Detail & Related papers (2024-11-10T00:35:14Z) - Spatial-Mamba: Effective Visual State Space Models via Structure-Aware State Fusion [46.82975707531064]
Selective state space models (SSMs) excel at capturing long-range dependencies in 1D sequential data.
We propose Spatial-Mamba, a novel approach that establishes neighborhood connectivity directly in the state space.
We show that Spatial-Mamba, even with a single scan, attains or surpasses the state-of-the-art SSM-based models in image classification, detection and segmentation.
arXiv Detail & Related papers (2024-10-19T12:56:58Z) - Stabilize the Latent Space for Image Autoregressive Modeling: A Unified Perspective [52.778766190479374]
Latent-based image generative models have achieved notable success in image generation tasks.
Despite sharing the same latent space, autoregressive models significantly lag behind LDMs and MIMs in image generation.
We propose a simple but effective discrete image tokenizer to stabilize the latent space for image generative modeling.
arXiv Detail & Related papers (2024-10-16T12:13:17Z) - Efficient Visual State Space Model for Image Deblurring [83.57239834238035]
Convolutional neural networks (CNNs) and Vision Transformers (ViTs) have achieved excellent performance in image restoration.
We propose a simple yet effective visual state space model (EVSSM) for image deblurring.
arXiv Detail & Related papers (2024-05-23T09:13:36Z) - Serpent: Scalable and Efficient Image Restoration via Multi-scale Structured State Space Models [22.702352459581434]
Serpent is an efficient architecture for high-resolution image restoration.
We show that Serpent can achieve reconstruction quality on par with state-of-the-art techniques.
arXiv Detail & Related papers (2024-03-26T17:43:15Z) - STMT: A Spatial-Temporal Mesh Transformer for MoCap-Based Action Recognition [50.064502884594376]
We study the problem of human action recognition using motion capture (MoCap) sequences.
We propose a novel Spatial-Temporal Mesh Transformer (STMT) to directly model the mesh sequences.
The proposed method achieves state-of-the-art performance compared to skeleton-based and point-cloud-based models.
arXiv Detail & Related papers (2023-03-31T16:19:27Z) - Normalizing Flows with Multi-Scale Autoregressive Priors [131.895570212956]
We introduce channel-wise dependencies in their latent space through multi-scale autoregressive priors (mAR)
Our mAR prior for models with split coupling flow layers (mAR-SCF) can better capture dependencies in complex multimodal data.
We show that mAR-SCF allows for improved image generation quality, with gains in FID and Inception scores compared to state-of-the-art flow-based models.
arXiv Detail & Related papers (2020-04-08T09:07:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.