論文の概要: Are Expressive Models Truly Necessary for Offline RL?
- arxiv url: http://arxiv.org/abs/2412.11253v1
- Date: Sun, 15 Dec 2024 17:33:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 14:00:23.401305
- Title: Are Expressive Models Truly Necessary for Offline RL?
- Title(参考訳): オフラインRLにとって表現型モデルは本当に必要か?
- Authors: Guan Wang, Haoyi Niu, Jianxiong Li, Li Jiang, Jianming Hu, Xianyuan Zhan,
- Abstract要約: シークエンシャルモデリングでは、適切なポリシー性能を確保するために、軌道データの長い地平線を越えて正確なダイナミクスを捉える必要がある。
浅層2層モデルほど単純な軽量モデルは、正確な動的一貫性と逐次モデリングエラーを著しく低減できることを示す。
- 参考スコア(独自算出の注目度): 18.425797519857113
- License:
- Abstract: Among various branches of offline reinforcement learning (RL) methods, goal-conditioned supervised learning (GCSL) has gained increasing popularity as it formulates the offline RL problem as a sequential modeling task, therefore bypassing the notoriously difficult credit assignment challenge of value learning in conventional RL paradigm. Sequential modeling, however, requires capturing accurate dynamics across long horizons in trajectory data to ensure reasonable policy performance. To meet this requirement, leveraging large, expressive models has become a popular choice in recent literature, which, however, comes at the cost of significantly increased computation and inference latency. Contradictory yet promising, we reveal that lightweight models as simple as shallow 2-layer MLPs, can also enjoy accurate dynamics consistency and significantly reduced sequential modeling errors against large expressive models by adopting a simple recursive planning scheme: recursively planning coarse-grained future sub-goals based on current and target information, and then executes the action with a goal-conditioned policy learned from data rela-beled with these sub-goal ground truths. We term our method Recursive Skip-Step Planning (RSP). Simple yet effective, RSP enjoys great efficiency improvements thanks to its lightweight structure, and substantially outperforms existing methods, reaching new SOTA performances on the D4RL benchmark, especially in multi-stage long-horizon tasks.
- Abstract(参考訳): オフライン強化学習法 (RL) の様々な分野において, 従来のRLパラダイムにおける難易度の高い信用代入課題を回避し, オフラインRL問題を逐次モデリングタスクとして定式化することにより, 目標条件付き教師あり学習 (GCSL) が普及している。
しかし、シークエンシャルモデリングでは、適切なポリシー性能を確保するために、軌道上の長い地平線をまたいで正確なダイナミクスを捉える必要がある。
この要件を満たすために、大規模で表現力のあるモデルを活用することは、最近の文献では一般的な選択肢となっているが、計算と推論の遅延を大幅に増大させるコストがかかる。
一方, 軽量モデルでは, 浅層2層MLPほど単純で, 高精度なダイナミックス一貫性を享受でき, 簡易な再帰計画手法を用いて, 大規模表現モデルに対する逐次的モデリング誤差を著しく低減できることを明らかにした。
本稿では,再帰的スキップステップ計画(Recursive Skip-Step Planning,RSP)と呼ぶ。
RSPは軽量な構造のおかげで非常に効率が良く、D4RLベンチマークで新しいSOTA性能、特に多段階の長距離タスクに到達した。
関連論文リスト
- Model-based RL as a Minimalist Approach to Horizon-Free and Second-Order Bounds [59.875550175217874]
本稿では,オンラインとオフラインのRL設定において,モデルベース強化学習方式が強い後悔とサンプル境界を実現することを示す。
我々のアルゴリズムは単純で、かなり標準的であり、実際にRLの文献で広く研究されている。
論文 参考訳(メタデータ) (2024-08-16T19:52:53Z) - Model-based Offline Reinforcement Learning with Lower Expectile Q-Learning [6.345851712811528]
我々は、新しいモデルに基づくオフラインRL手法、Low expectile Q-learning (LEQ)を導入する。
LEQは、$lambda$-returnsの低い期待回帰による低バイアスモデルベースの値推定を提供する。
我々の研究は、低期待の回帰、$lambda$-returns、オフラインデータに対する批判的トレーニングがLEQにとって重要であることを示した。
論文 参考訳(メタデータ) (2024-06-30T13:44:59Z) - Simplified Temporal Consistency Reinforcement Learning [19.814047499837084]
本稿では,潜時整合性によって訓練された潜時力学モデルに依存する単純な表現学習手法が,高性能なRLには十分であることを示す。
提案手法は,モデルフリー手法を大きなマージンで上回り,モデルベース手法のサンプル効率を2.4倍高速にトレーニングしながら比較する。
論文 参考訳(メタデータ) (2023-06-15T19:37:43Z) - Learning a model is paramount for sample efficiency in reinforcement
learning control of PDEs [5.488334211013093]
RLエージェントの訓練と並行して動作モデルを学ぶことで,実システムからサンプリングしたデータ量を大幅に削減できることを示す。
また、RLトレーニングのバイアスを避けるために、モデルを反復的に更新することが重要であることも示している。
論文 参考訳(メタデータ) (2023-02-14T16:14:39Z) - Simplifying Model-based RL: Learning Representations, Latent-space
Models, and Policies with One Objective [142.36200080384145]
自己整合性を維持しつつ高いリターンを達成するために,潜在空間モデルとポリシーを協調的に最適化する単一目的を提案する。
得られたアルゴリズムは, モデルベースおよびモデルフリーRL手法のサンプル効率に適合するか, 改善することを示した。
論文 参考訳(メタデータ) (2022-09-18T03:51:58Z) - Reinforcement Learning as One Big Sequence Modeling Problem [84.84564880157149]
強化学習(Reinforcement Learning, RL)は、通常、単一ステップポリシーや単一ステップモデルの推定に関係している。
我々は、RLをシーケンスモデリング問題とみなし、高い報酬のシーケンスにつながる一連のアクションを予測することを目標としている。
論文 参考訳(メタデータ) (2021-06-03T17:58:51Z) - Model-Based Offline Planning with Trajectory Pruning [15.841609263723575]
オフライン強化学習(RL)は、環境相互作用のない事前コンパイルデータセットを使用した学習ポリシーを可能にする。
オフライン学習の制約と高性能計画の間のジレンマに取り組む新しい軽量モデルベースのオフライン計画フレームワークであるMOPPを提案します。
実験の結果,MOPPは既存のモデルベースオフラインプランニングやRLアプローチと比較して,競争性能が向上していることがわかった。
論文 参考訳(メタデータ) (2021-05-16T05:00:54Z) - COMBO: Conservative Offline Model-Based Policy Optimization [120.55713363569845]
ディープニューラルネットワークのような複雑なモデルによる不確実性推定は困難であり、信頼性が低い。
我々は,サポート外状態動作の値関数を正規化するモデルベースオフラインRLアルゴリズムCOMBOを開発した。
従来のオフラインモデルフリーメソッドやモデルベースメソッドと比べて、comboは一貫してパフォーマンスが良いことが分かりました。
論文 参考訳(メタデータ) (2021-02-16T18:50:32Z) - Offline Reinforcement Learning from Images with Latent Space Models [60.69745540036375]
オフライン強化学習(RL)とは、環境相互作用の静的データセットからポリシーを学習する問題を指します。
オフラインRLのためのモデルベースアルゴリズムの最近の進歩の上に構築し、それらを高次元の視覚観測空間に拡張する。
提案手法は, 実測可能であり, 未知のPOMDPにおけるELBOの下限の最大化に対応している。
論文 参考訳(メタデータ) (2020-12-21T18:28:17Z) - MOPO: Model-based Offline Policy Optimization [183.6449600580806]
オフライン強化学習(英語: offline reinforcement learning, RL)とは、以前に収集された大量のデータから完全に学習ポリシーを学習する問題を指す。
既存のモデルベースRLアルゴリズムは,すでにオフライン設定において大きな利益を上げていることを示す。
本稿では,既存のモデルに基づくRL法を,力学の不確実性によって人為的に罰せられる報酬で適用することを提案する。
論文 参考訳(メタデータ) (2020-05-27T08:46:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。