A Comparative Study on Dynamic Graph Embedding based on Mamba and Transformers
- URL: http://arxiv.org/abs/2412.11293v1
- Date: Sun, 15 Dec 2024 19:56:56 GMT
- Title: A Comparative Study on Dynamic Graph Embedding based on Mamba and Transformers
- Authors: Ashish Parmanand Pandey, Alan John Varghese, Sarang Patil, Mengjia Xu,
- Abstract summary: This study presents a comparative analysis of dynamic graph embedding approaches using transformers and the recently proposed Mamba architecture.
We introduce three novel models: TransformerG2G augment with graph convolutional networks, DG-Mamba, and GDG-Mamba with graph isomorphism network edge convolutions.
Our experiments on multiple benchmark datasets demonstrate that Mamba-based models achieve comparable or superior performance to transformer-based approaches in link prediction tasks.
- Score: 0.29687381456164
- License:
- Abstract: Dynamic graph embedding has emerged as an important technique for modeling complex time-evolving networks across diverse domains. While transformer-based models have shown promise in capturing long-range dependencies in temporal graph data, they face scalability challenges due to quadratic computational complexity. This study presents a comparative analysis of dynamic graph embedding approaches using transformers and the recently proposed Mamba architecture, a state-space model with linear complexity. We introduce three novel models: TransformerG2G augment with graph convolutional networks, DG-Mamba, and GDG-Mamba with graph isomorphism network edge convolutions. Our experiments on multiple benchmark datasets demonstrate that Mamba-based models achieve comparable or superior performance to transformer-based approaches in link prediction tasks while offering significant computational efficiency gains on longer sequences. Notably, DG-Mamba variants consistently outperform transformer-based models on datasets with high temporal variability, such as UCI, Bitcoin, and Reality Mining, while maintaining competitive performance on more stable graphs like SBM. We provide insights into the learned temporal dependencies through analysis of attention weights and state matrices, revealing the models' ability to capture complex temporal patterns. By effectively combining state-space models with graph neural networks, our work addresses key limitations of previous approaches and contributes to the growing body of research on efficient temporal graph representation learning. These findings offer promising directions for scaling dynamic graph embedding to larger, more complex real-world networks, potentially enabling new applications in areas such as social network analysis, financial modeling, and biological system dynamics.
Related papers
- Hybrid State-Space and GRU-based Graph Tokenization Mamba for Hyperspectral Image Classification [14.250184447492208]
Hyperspectral image (HSI) classification plays a pivotal role in domains such as environmental monitoring, agriculture, and urban planning.
Traditional methods, including machine learning and convolutional neural networks (CNNs), often struggle to effectively capture these intricate spectral-spatial features.
This work proposes GraphMamba, a hybrid model that combines spectral-spatial token generation, graph-based token prioritization, and cross-attention mechanisms.
arXiv Detail & Related papers (2025-02-10T13:02:19Z) - LLM-Based Multi-Agent Systems are Scalable Graph Generative Models [73.28294528654885]
GraphAgent-Generator (GAG) is a novel simulation-based framework for dynamic, text-attributed social graph generation.
GAG simulates the temporal node and edge generation processes for zero-shot social graph generation.
The resulting graphs exhibit adherence to seven key macroscopic network properties, achieving an 11% improvement in microscopic graph structure metrics.
arXiv Detail & Related papers (2024-10-13T12:57:08Z) - MambaVT: Spatio-Temporal Contextual Modeling for robust RGB-T Tracking [51.28485682954006]
We propose a pure Mamba-based framework (MambaVT) to fully exploit intrinsic-temporal contextual modeling for robust visible-thermal tracking.
Specifically, we devise the long-range cross-frame integration component to globally adapt to target appearance variations.
Experiments show the significant potential of vision Mamba for RGB-T tracking, with MambaVT achieving state-of-the-art performance on four mainstream benchmarks.
arXiv Detail & Related papers (2024-08-15T02:29:00Z) - DyG-Mamba: Continuous State Space Modeling on Dynamic Graphs [59.434893231950205]
Dynamic graph learning aims to uncover evolutionary laws in real-world systems.
We propose DyG-Mamba, a new continuous state space model for dynamic graph learning.
We show that DyG-Mamba achieves state-of-the-art performance on most datasets.
arXiv Detail & Related papers (2024-08-13T15:21:46Z) - State Space Models on Temporal Graphs: A First-Principles Study [30.531930200222423]
Research on deep graph learning has shifted from static graphs to temporal graphs in response to real-world complex systems that exhibit dynamic behaviors.
Sequence models such as RNNs or Transformers have long been the predominant backbone networks for modeling such temporal graphs.
We develop GraphSSM, a graph state space model for modeling the dynamics of temporal graphs.
arXiv Detail & Related papers (2024-06-03T02:56:11Z) - Todyformer: Towards Holistic Dynamic Graph Transformers with
Structure-Aware Tokenization [6.799413002613627]
Todyformer is a novel Transformer-based neural network tailored for dynamic graphs.
It unifies the local encoding capacity of Message-Passing Neural Networks (MPNNs) with the global encoding of Transformers.
We show that Todyformer consistently outperforms the state-of-the-art methods for downstream tasks.
arXiv Detail & Related papers (2024-02-02T23:05:30Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
Modelling long-range dependencies is critical for scene understanding tasks in computer vision.
A fully-connected graph is beneficial for such modelling, but its computational overhead is prohibitive.
We propose a dynamic graph message passing network, that significantly reduces the computational complexity.
arXiv Detail & Related papers (2022-09-20T14:41:37Z) - Spectral Transform Forms Scalable Transformer [1.19071399645846]
This work learns from the philosophy of self-attention and proposes an efficient spectral-based neural unit that employs informative long-range temporal interaction.
The developed spectral window unit (SW) model predicts scalable dynamic graphs with assured efficiency.
arXiv Detail & Related papers (2021-11-15T08:46:01Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
We propose a novel graph neural network approach, called TCL, which deals with the dynamically-evolving graph in a continuous-time fashion.
To the best of our knowledge, this is the first attempt to apply contrastive learning to representation learning on dynamic graphs.
arXiv Detail & Related papers (2021-05-17T15:33:25Z) - Lightweight, Dynamic Graph Convolutional Networks for AMR-to-Text
Generation [56.73834525802723]
Lightweight Dynamic Graph Convolutional Networks (LDGCNs) are proposed.
LDGCNs capture richer non-local interactions by synthesizing higher order information from the input graphs.
We develop two novel parameter saving strategies based on the group graph convolutions and weight tied convolutions to reduce memory usage and model complexity.
arXiv Detail & Related papers (2020-10-09T06:03:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.