High-efficiency On-chip Quantum Photon Source in Modal Phase-matched Lithium Niobate Nanowaveguide
- URL: http://arxiv.org/abs/2412.11372v1
- Date: Mon, 16 Dec 2024 01:58:52 GMT
- Title: High-efficiency On-chip Quantum Photon Source in Modal Phase-matched Lithium Niobate Nanowaveguide
- Authors: Xiao-Xu Fang, Hao-Yang Du, Xiuquan Zhang, Lei Wang, Feng Chen, He Lu,
- Abstract summary: Thin-film lithium niobate on insulator(LNOI) emerges as a promising platform for integrated quantum photon source.
We report an alternative strategy to offset the phase mismatching of spontaneous parametric down-conversion process.
This dual-layer waveguide generates photon pairs with pair generation rate of 41.77GHz/mW.
- Score: 4.5382577231478605
- License:
- Abstract: Thin-film lithium niobate on insulator~(LNOI) emerges as a promising platform for integrated quantum photon source, enabling scalable on-chip quantum information processing. The most popular technique to overcome the phase mismatching between interacting waves in waveguide is periodic poling, which is intrinsically sensitive to poling uniformity. Here, we report an alternative strategy to offset the phase mismatching of spontaneous parametric down-conversion~(SPDC) process, so-called modal phase matching, in a straight waveguide fabricated on a dual-layer LNOI. The dual-layer LNOI consists of two 300~nm lithium niobates with opposite directions, which significantly enhances the spatial overlap between fundamental and high-order modes and thus enables efficient SPDC. This dual-layer waveguide generates photon pairs with pair generation rate of 41.77~GHz/mW, which exhibits excellent signal-to-noise performance with coincidence-to-accidental ratio up to 58298$\pm$1297. Moreover, we observe a heralded single-photon source with second-order autocorrelation $g_{H}^{(2)}(0)<0.2$ and heralded rate exceeding 100~kHz. Our results provide an experiment-friendly approach for efficient generation of quantum photon sources and benefit the on-chip quantum information processing based on LNOI.
Related papers
- Polarization-entangled photon pairs generation from a single lithium niobate waveguide with single poling period [7.30580496740769]
We propose a simple and efficient scheme to generate polarization-entangled photon pairs based on type-0 SPDC.
By utilizing the strong dispersion engineering capabilities of thin-film waveguides, we can achieve both degenerate and highly detuned entangled photon pairs.
arXiv Detail & Related papers (2024-10-30T08:08:51Z) - Efficient generation of broadband photon pairs in shallow-etched lithium niobate nanowaveguide [0.0]
shallow-etched periodically poled lithium niobate waveguide to realize broadband spontaneous down-conversion(SPDC) on nanophotonic chip.
We demonstrate photon-pair generation with a high brightness of 11.7GHz/mW and bandwidth of 22THz, in a 5.7-mm-long PPLN waveguide.
arXiv Detail & Related papers (2024-06-25T10:21:55Z) - Efficient photon-pair generation in layer-poled lithium niobate nanophotonic waveguides [10.571773636879247]
Thin-film lithium niobate is a promising platform for on-chip photon-pair generation.
We introduce a layer-poled lithium niobate (LPLN) nanophotonic waveguide for efficient photon-pair generation.
We demonstrate photon-pair generation with a normalized brightness of 3.1*106 Hz nm-1 mW-2 in a 3.3 mm long LPLN waveguide.
arXiv Detail & Related papers (2024-05-17T17:57:26Z) - All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Complete conversion between one and two photons in nonlinear waveguides
with tailored dispersion [62.997667081978825]
We show theoretically how to control coherent conversion between a narrow-band pump photon and broadband photon pairs in nonlinear optical waveguides.
We reveal that complete deterministic conversion as well as pump-photon revival can be achieved at a finite propagation distance.
arXiv Detail & Related papers (2021-10-06T23:49:44Z) - Room temperature single-photon emitters in silicon nitride [97.75917079876487]
We report on the first-time observation of room-temperature single-photon emitters in silicon nitride (SiN) films grown on silicon dioxide substrates.
As SiN has recently emerged as one of the most promising materials for integrated quantum photonics, the proposed platform is suitable for scalable fabrication of quantum on-chip devices.
arXiv Detail & Related papers (2021-04-16T14:20:11Z) - Quantum Borrmann effect for dissipation-immune photon-photon
correlations [137.6408511310322]
We study theoretically the second-order correlation function $g(2)(t)$ for photons transmitted through a periodic Bragg-spaced array of superconducting qubits, coupled to a waveguide.
We demonstrate that photon bunching and anti-bunching persist much longer than both radiative and non-radiative lifetimes of a single qubit.
arXiv Detail & Related papers (2020-09-29T14:37:04Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z) - Resonance fluorescence from waveguide-coupled strain-localized
two-dimensional quantum emitters [0.0]
We show a scalable approach using a silicon nitride photonic waveguide to strain-localize single-photon emitters from a tungsten diselenide (WSe2) monolayer and to couple them into a waveguide mode.
Our results are an important step to enable coherent control of quantum states and multiplexing of high-quality single photons in a scalable photonic quantum circuit.
arXiv Detail & Related papers (2020-02-18T15:45:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.