Relation-Guided Adversarial Learning for Data-free Knowledge Transfer
- URL: http://arxiv.org/abs/2412.11380v1
- Date: Mon, 16 Dec 2024 02:11:02 GMT
- Title: Relation-Guided Adversarial Learning for Data-free Knowledge Transfer
- Authors: Yingping Liang, Ying Fu,
- Abstract summary: We introduce a novel Relation-Guided Adversarial Learning method with triplet losses.
Our method aims to promote both intra-class diversity and inter-class confusion of the generated samples.
RGAL shows significant improvement over previous state-of-the-art methods in accuracy and data efficiency.
- Score: 9.069156418033174
- License:
- Abstract: Data-free knowledge distillation transfers knowledge by recovering training data from a pre-trained model. Despite the recent success of seeking global data diversity, the diversity within each class and the similarity among different classes are largely overlooked, resulting in data homogeneity and limited performance. In this paper, we introduce a novel Relation-Guided Adversarial Learning method with triplet losses, which solves the homogeneity problem from two aspects. To be specific, our method aims to promote both intra-class diversity and inter-class confusion of the generated samples. To this end, we design two phases, an image synthesis phase and a student training phase. In the image synthesis phase, we construct an optimization process to push away samples with the same labels and pull close samples with different labels, leading to intra-class diversity and inter-class confusion, respectively. Then, in the student training phase, we perform an opposite optimization, which adversarially attempts to reduce the distance of samples of the same classes and enlarge the distance of samples of different classes. To mitigate the conflict of seeking high global diversity and keeping inter-class confusing, we propose a focal weighted sampling strategy by selecting the negative in the triplets unevenly within a finite range of distance. RGAL shows significant improvement over previous state-of-the-art methods in accuracy and data efficiency. Besides, RGAL can be inserted into state-of-the-art methods on various data-free knowledge transfer applications. Experiments on various benchmarks demonstrate the effectiveness and generalizability of our proposed method on various tasks, specially data-free knowledge distillation, data-free quantization, and non-exemplar incremental learning. Our code is available at https://github.com/Sharpiless/RGAL.
Related papers
- Exemplar-condensed Federated Class-incremental Learning [9.970891140174658]
We propose Exemplar-Condensed federated class-incremental learning (ECoral) to distil the training characteristics of real images from streaming data into informative rehearsal exemplars.
arXiv Detail & Related papers (2024-12-25T15:13:40Z) - CorrSynth -- A Correlated Sampling Method for Diverse Dataset Generation from LLMs [5.89889361990138]
Large language models (LLMs) have demonstrated remarkable performance in diverse tasks using zero-shot and few-shot prompting.
In this work, we tackle the challenge of generating datasets with high diversity, upon which a student model is trained for downstream tasks.
Taking the route of decoding-time guidance-based approaches, we propose Corr Synth, which generates data that is more diverse and faithful to the input prompt using a correlated sampling strategy.
arXiv Detail & Related papers (2024-11-13T12:09:23Z) - Continuous Contrastive Learning for Long-Tailed Semi-Supervised Recognition [50.61991746981703]
Current state-of-the-art LTSSL approaches rely on high-quality pseudo-labels for large-scale unlabeled data.
This paper introduces a novel probabilistic framework that unifies various recent proposals in long-tail learning.
We introduce a continuous contrastive learning method, CCL, extending our framework to unlabeled data using reliable and smoothed pseudo-labels.
arXiv Detail & Related papers (2024-10-08T15:06:10Z) - CKD: Contrastive Knowledge Distillation from A Sample-wise Perspective [48.99488315273868]
We present a contrastive knowledge distillation approach, which can be formulated as a sample-wise alignment problem with intra- and inter-sample constraints.
Our method minimizes logit differences within the same sample by considering their numerical values.
We conduct comprehensive experiments on three datasets including CIFAR-100, ImageNet-1K, and MS COCO.
arXiv Detail & Related papers (2024-04-22T11:52:40Z) - Segue: Side-information Guided Generative Unlearnable Examples for
Facial Privacy Protection in Real World [64.4289385463226]
We propose Segue: Side-information guided generative unlearnable examples.
To improve transferability, we introduce side information such as true labels and pseudo labels.
It can resist JPEG compression, adversarial training, and some standard data augmentations.
arXiv Detail & Related papers (2023-10-24T06:22:37Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
Imbalanced datasets are commonly observed in various real-world applications, presenting significant challenges in training classifiers.
We propose generating synthetic samples iteratively by mixing data samples from both minority and majority classes.
We demonstrate the effectiveness of our proposed framework through extensive experiments conducted on seven publicly available benchmark datasets.
arXiv Detail & Related papers (2023-08-28T18:48:34Z) - Intra-class Adaptive Augmentation with Neighbor Correction for Deep
Metric Learning [99.14132861655223]
We propose a novel intra-class adaptive augmentation (IAA) framework for deep metric learning.
We reasonably estimate intra-class variations for every class and generate adaptive synthetic samples to support hard samples mining.
Our method significantly improves and outperforms the state-of-the-art methods on retrieval performances by 3%-6%.
arXiv Detail & Related papers (2022-11-29T14:52:38Z) - Implicit Data Augmentation Using Feature Interpolation for Diversified
Low-Shot Image Generation [11.4559888429977]
Training of generative models can easily diverge in low-data setting.
We propose a novel implicit data augmentation approach which facilitates stable training and synthesize diverse samples.
arXiv Detail & Related papers (2021-12-04T23:55:46Z) - Self-Supervised Learning by Estimating Twin Class Distributions [26.7828253129684]
We present TWIST, a novel self-supervised representation learning method by classifying large-scale unlabeled datasets in an end-to-end way.
We employ a siamese network terminated by a softmax operation to produce twin class distributions of two augmented images.
Specifically, we minimize the entropy of the distribution for each sample to make the class prediction for each sample and maximize the entropy of the mean distribution to make the predictions of different samples diverse.
arXiv Detail & Related papers (2021-10-14T14:39:39Z) - Semi-supervised Long-tailed Recognition using Alternate Sampling [95.93760490301395]
Main challenges in long-tailed recognition come from the imbalanced data distribution and sample scarcity in its tail classes.
We propose a new recognition setting, namely semi-supervised long-tailed recognition.
We demonstrate significant accuracy improvements over other competitive methods on two datasets.
arXiv Detail & Related papers (2021-05-01T00:43:38Z) - Imbalanced Data Learning by Minority Class Augmentation using Capsule
Adversarial Networks [31.073558420480964]
We propose a method to restore the balance in imbalanced images, by coalescing two concurrent methods.
In our model, generative and discriminative networks play a novel competitive game.
The coalescing of capsule-GAN is effective at recognizing highly overlapping classes with much fewer parameters compared with the convolutional-GAN.
arXiv Detail & Related papers (2020-04-05T12:36:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.