Exemplar-condensed Federated Class-incremental Learning
- URL: http://arxiv.org/abs/2412.18926v1
- Date: Wed, 25 Dec 2024 15:13:40 GMT
- Title: Exemplar-condensed Federated Class-incremental Learning
- Authors: Rui Sun, Yumin Zhang, Varun Ojha, Tejal Shah, Haoran Duan, Bo Wei, Rajiv Ranjan,
- Abstract summary: We propose Exemplar-Condensed federated class-incremental learning (ECoral) to distil the training characteristics of real images from streaming data into informative rehearsal exemplars.
- Score: 9.970891140174658
- License:
- Abstract: We propose Exemplar-Condensed federated class-incremental learning (ECoral) to distil the training characteristics of real images from streaming data into informative rehearsal exemplars. The proposed method eliminates the limitations of exemplar selection in replay-based approaches for mitigating catastrophic forgetting in federated continual learning (FCL). The limitations particularly related to the heterogeneity of information density of each summarized data. Our approach maintains the consistency of training gradients and the relationship to past tasks for the summarized exemplars to represent the streaming data compared to the original images effectively. Additionally, our approach reduces the information-level heterogeneity of the summarized data by inter-client sharing of the disentanglement generative model. Extensive experiments show that our ECoral outperforms several state-of-the-art methods and can be seamlessly integrated with many existing approaches to enhance performance.
Related papers
- Relation-Guided Adversarial Learning for Data-free Knowledge Transfer [9.069156418033174]
We introduce a novel Relation-Guided Adversarial Learning method with triplet losses.
Our method aims to promote both intra-class diversity and inter-class confusion of the generated samples.
RGAL shows significant improvement over previous state-of-the-art methods in accuracy and data efficiency.
arXiv Detail & Related papers (2024-12-16T02:11:02Z) - Bayesian Learning-driven Prototypical Contrastive Loss for Class-Incremental Learning [42.14439854721613]
We propose a prototypical network with a Bayesian learning-driven contrastive loss (BLCL) tailored specifically for class-incremental learning scenarios.
Our approach dynamically adapts the balance between the cross-entropy and contrastive loss functions with a Bayesian learning technique.
arXiv Detail & Related papers (2024-05-17T19:49:02Z) - DiffClass: Diffusion-Based Class Incremental Learning [30.514281721324853]
Class Incremental Learning (CIL) is challenging due to catastrophic forgetting.
Recent exemplar-free CIL methods attempt to mitigate catastrophic forgetting by synthesizing previous task data.
We propose a novel exemplar-free CIL method to overcome these issues.
arXiv Detail & Related papers (2024-03-08T03:34:18Z) - Relaxed Contrastive Learning for Federated Learning [48.96253206661268]
We propose a novel contrastive learning framework to address the challenges of data heterogeneity in federated learning.
Our framework outperforms all existing federated learning approaches by huge margins on the standard benchmarks.
arXiv Detail & Related papers (2024-01-10T04:55:24Z) - Convolutional autoencoder-based multimodal one-class classification [80.52334952912808]
One-class classification refers to approaches of learning using data from a single class only.
We propose a deep learning one-class classification method suitable for multimodal data.
arXiv Detail & Related papers (2023-09-25T12:31:18Z) - Ensemble Modeling for Multimodal Visual Action Recognition [50.38638300332429]
We propose an ensemble modeling approach for multimodal action recognition.
We independently train individual modality models using a variant of focal loss tailored to handle the long-tailed distribution of the MECCANO [21] dataset.
arXiv Detail & Related papers (2023-08-10T08:43:20Z) - A Novel Cross-Perturbation for Single Domain Generalization [54.612933105967606]
Single domain generalization aims to enhance the ability of the model to generalize to unknown domains when trained on a single source domain.
The limited diversity in the training data hampers the learning of domain-invariant features, resulting in compromised generalization performance.
We propose CPerb, a simple yet effective cross-perturbation method to enhance the diversity of the training data.
arXiv Detail & Related papers (2023-08-02T03:16:12Z) - Self-aware and Cross-sample Prototypical Learning for Semi-supervised
Medical Image Segmentation [10.18427897663732]
Consistency learning plays a crucial role in semi-supervised medical image segmentation.
It enables the effective utilization of limited annotated data while leveraging the abundance of unannotated data.
We propose a self-aware and cross-sample prototypical learning method ( SCP-Net) to enhance the diversity of prediction in consistency learning.
arXiv Detail & Related papers (2023-05-25T16:22:04Z) - Dense Contrastive Visual-Linguistic Pretraining [53.61233531733243]
Several multimodal representation learning approaches have been proposed that jointly represent image and text.
These approaches achieve superior performance by capturing high-level semantic information from large-scale multimodal pretraining.
We propose unbiased Dense Contrastive Visual-Linguistic Pretraining to replace the region regression and classification with cross-modality region contrastive learning.
arXiv Detail & Related papers (2021-09-24T07:20:13Z) - Deep Relational Metric Learning [84.95793654872399]
This paper presents a deep relational metric learning framework for image clustering and retrieval.
We learn an ensemble of features that characterizes an image from different aspects to model both interclass and intraclass distributions.
Experiments on the widely-used CUB-200-2011, Cars196, and Stanford Online Products datasets demonstrate that our framework improves existing deep metric learning methods and achieves very competitive results.
arXiv Detail & Related papers (2021-08-23T09:31:18Z) - An Experimental Study of Data Heterogeneity in Federated Learning
Methods for Medical Imaging [8.984706828657814]
Federated learning enables multiple institutions to collaboratively train machine learning models on their local data in a privacy-preserving way.
We investigate the deleterious impact of a taxonomy of data heterogeneity regimes on federated learning methods, including quantity skew, label distribution skew, and imaging acquisition skew.
We present several mitigation strategies to overcome performance drops from data heterogeneity, including weighted average for data quantity skew, weighted loss and batch normalization averaging for label distribution skew.
arXiv Detail & Related papers (2021-07-18T05:47:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.