Adapting Segment Anything Model (SAM) to Experimental Datasets via Fine-Tuning on GAN-based Simulation: A Case Study in Additive Manufacturing
- URL: http://arxiv.org/abs/2412.11381v1
- Date: Mon, 16 Dec 2024 02:11:19 GMT
- Title: Adapting Segment Anything Model (SAM) to Experimental Datasets via Fine-Tuning on GAN-based Simulation: A Case Study in Additive Manufacturing
- Authors: Anika Tabassum, Amirkoushyar Ziabari,
- Abstract summary: Segment Anything Model (SAM) is designed for general-purpose image segmentation.<n>In this work, we explore the application and limitations of SAM for industrial X-ray CT inspection of additive manufacturing components.<n>We propose a fine-tuning strategy utilizing parameter-efficient techniques, specifically Conv-LoRa, to adapt SAM for material-specific datasets.
- Score: 1.8547557605937304
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Industrial X-ray computed tomography (XCT) is a powerful tool for non-destructive characterization of materials and manufactured components. XCT commonly accompanied by advanced image analysis and computer vision algorithms to extract relevant information from the images. Traditional computer vision models often struggle due to noise, resolution variability, and complex internal structures, particularly in scientific imaging applications. State-of-the-art foundational models, like the Segment Anything Model (SAM)-designed for general-purpose image segmentation-have revolutionized image segmentation across various domains, yet their application in specialized fields like materials science remains under-explored. In this work, we explore the application and limitations of SAM for industrial X-ray CT inspection of additive manufacturing components. We demonstrate that while SAM shows promise, it struggles with out-of-distribution data, multiclass segmentation, and computational efficiency during fine-tuning. To address these issues, we propose a fine-tuning strategy utilizing parameter-efficient techniques, specifically Conv-LoRa, to adapt SAM for material-specific datasets. Additionally, we leverage generative adversarial network (GAN)-generated data to enhance the training process and improve the model's segmentation performance on complex X-ray CT data. Our experimental results highlight the importance of tailored segmentation models for accurate inspection, showing that fine-tuning SAM on domain-specific scientific imaging data significantly improves performance. However, despite improvements, the model's ability to generalize across diverse datasets remains limited, highlighting the need for further research into robust, scalable solutions for domain-specific segmentation tasks.
Related papers
- Semantic Segmentation of iPS Cells: Case Study on Model Complexity in Biomedical Imaging [0.0]
We show that a carefully configured DeepLabv3 model can achieve high performance in segmenting induced pluripotent stem (iPS) cell colonies.<n>We also offer an open-source implementation that includes strategies for small datasets and domain-specific encoding.
arXiv Detail & Related papers (2025-07-29T09:05:01Z) - Enhancing SAM with Efficient Prompting and Preference Optimization for Semi-supervised Medical Image Segmentation [30.524999223901645]
We propose an enhanced Segment Anything Model (SAM) framework that utilizes annotation-efficient prompts generated in a fully unsupervised fashion.
We adopt the direct preference optimization technique to design an optimal policy that enables the model to generate high-fidelity segmentations.
State-of-the-art performance of our framework in tasks such as lung segmentation, breast tumor segmentation, and organ segmentation across various modalities, including X-ray, ultrasound, and abdominal CT, justifies its effectiveness in low-annotation data scenarios.
arXiv Detail & Related papers (2025-03-06T17:28:48Z) - MRGen: Segmentation Data Engine For Underrepresented MRI Modalities [59.61465292965639]
Training medical image segmentation models for rare yet clinically significant imaging modalities is challenging due to the scarcity of annotated data.
This paper investigates leveraging generative models to synthesize training data, to train segmentation models for underrepresented modalities.
arXiv Detail & Related papers (2024-12-04T16:34:22Z) - Deep learning for fast segmentation and critical dimension metrology & characterization enabling AR/VR design and fabrication [0.0]
We report on the fine-tuning of a pre-trained Segment Anything Model (SAM) using a diverse dataset of electron microscopy images.
We employ methods such as low-rank adaptation (LoRA) to reduce training time and enhance the accuracy of ROI extraction.
The model's ability to generalize to unseen images facilitates zero-shot learning and supports a CD extraction model.
arXiv Detail & Related papers (2024-09-20T23:54:58Z) - Do Vision Foundation Models Enhance Domain Generalization in Medical Image Segmentation? [10.20366295974822]
We introduce a novel decode head architecture, HQHSAM, which simply integrates elements from two state-of-the-art decoder heads, HSAM and HQSAM, to enhance segmentation performance.
Our experiments on multiple datasets, encompassing various anatomies and modalities, reveal that FMs, particularly with the HQHSAM decode head, improve domain generalization for medical image segmentation.
arXiv Detail & Related papers (2024-09-12T11:41:35Z) - Benchmarking Embedding Aggregation Methods in Computational Pathology: A Clinical Data Perspective [32.93871326428446]
Recent advances in artificial intelligence (AI) are revolutionizing medical imaging and computational pathology.
A constant challenge in the analysis of digital Whole Slide Images (WSIs) is the problem of aggregating tens of thousands of tile-level image embeddings to a slide-level representation.
This study conducts a benchmarking analysis of ten slide-level aggregation techniques across nine clinically relevant tasks.
arXiv Detail & Related papers (2024-07-10T17:00:57Z) - Images in Discrete Choice Modeling: Addressing Data Isomorphism in
Multi-Modality Inputs [77.54052164713394]
This paper explores the intersection of Discrete Choice Modeling (DCM) and machine learning.
We investigate the consequences of embedding high-dimensional image data that shares isomorphic information with traditional tabular inputs within a DCM framework.
arXiv Detail & Related papers (2023-12-22T14:33:54Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS) is a new challenge that combines computer vision and natural language processing.
Traditional Referring Image (RIS) approaches have been impeded by the complex spatial scales and orientations found in aerial imagery.
We introduce the Rotated Multi-Scale Interaction Network (RMSIN), an innovative approach designed for the unique demands of RRSIS.
arXiv Detail & Related papers (2023-12-19T08:14:14Z) - Building Universal Foundation Models for Medical Image Analysis with
Spatially Adaptive Networks [5.661631789478932]
We propose a universal foundation model for medical image analysis that processes images with heterogeneous spatial properties using a unified structure.
We pre-train a spatial adaptive visual tokenizer (SPAD-VT) and then a spatial adaptive Vision Transformer (SPAD-ViT) via masked image modeling (MIM) on 55 public medical image datasets.
The experimental results on downstream medical image classification and segmentation tasks demonstrate the superior performance and label efficiency of our model.
arXiv Detail & Related papers (2023-12-12T08:33:45Z) - StableLLaVA: Enhanced Visual Instruction Tuning with Synthesized
Image-Dialogue Data [129.92449761766025]
We propose a novel data collection methodology that synchronously synthesizes images and dialogues for visual instruction tuning.
This approach harnesses the power of generative models, marrying the abilities of ChatGPT and text-to-image generative models.
Our research includes comprehensive experiments conducted on various datasets.
arXiv Detail & Related papers (2023-08-20T12:43:52Z) - Domain Shift in Computer Vision models for MRI data analysis: An
Overview [64.69150970967524]
Machine learning and computer vision methods are showing good performance in medical imagery analysis.
Yet only a few applications are now in clinical use.
Poor transferability of themodels to data from different sources or acquisition domains is one of the reasons for that.
arXiv Detail & Related papers (2020-10-14T16:34:21Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.