Do Vision Foundation Models Enhance Domain Generalization in Medical Image Segmentation?
- URL: http://arxiv.org/abs/2409.07960v1
- Date: Thu, 12 Sep 2024 11:41:35 GMT
- Title: Do Vision Foundation Models Enhance Domain Generalization in Medical Image Segmentation?
- Authors: Kerem Cekmeceli, Meva Himmetoglu, Guney I. Tombak, Anna Susmelj, Ertunc Erdil, Ender Konukoglu,
- Abstract summary: We introduce a novel decode head architecture, HQHSAM, which simply integrates elements from two state-of-the-art decoder heads, HSAM and HQSAM, to enhance segmentation performance.
Our experiments on multiple datasets, encompassing various anatomies and modalities, reveal that FMs, particularly with the HQHSAM decode head, improve domain generalization for medical image segmentation.
- Score: 10.20366295974822
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural networks achieve state-of-the-art performance in many supervised learning tasks when the training data distribution matches the test data distribution. However, their performance drops significantly under domain (covariate) shift, a prevalent issue in medical image segmentation due to varying acquisition settings across different scanner models and protocols. Recently, foundational models (FMs) trained on large datasets have gained attention for their ability to be adapted for downstream tasks and achieve state-of-the-art performance with excellent generalization capabilities on natural images. However, their effectiveness in medical image segmentation remains underexplored. In this paper, we investigate the domain generalization performance of various FMs, including DinoV2, SAM, MedSAM, and MAE, when fine-tuned using various parameter-efficient fine-tuning (PEFT) techniques such as Ladder and Rein (+LoRA) and decoder heads. We introduce a novel decode head architecture, HQHSAM, which simply integrates elements from two state-of-the-art decoder heads, HSAM and HQSAM, to enhance segmentation performance. Our extensive experiments on multiple datasets, encompassing various anatomies and modalities, reveal that FMs, particularly with the HQHSAM decode head, improve domain generalization for medical image segmentation. Moreover, we found that the effectiveness of PEFT techniques varies across different FMs. These findings underscore the potential of FMs to enhance the domain generalization performance of neural networks in medical image segmentation across diverse clinical settings, providing a solid foundation for future research. Code and models are available for research purposes at \url{https://github.com/kerem-cekmeceli/Foundation-Models-for-Medical-Imagery}.
Related papers
- KA$^2$ER: Knowledge Adaptive Amalgamation of ExpeRts for Medical Images Segmentation [5.807887214293438]
We propose an adaptive amalgamation knowledge framework that aims to train a versatile foundation model to handle the joint goals of multiple expert models.
In particular, we first train an nnUNet-based expert model for each task, and reuse the pre-trained SwinUNTER as the target foundation model.
Within the hidden layer, the hierarchical attention mechanisms are designed to achieve adaptive merging of the target model to the hidden layer feature knowledge of all experts.
arXiv Detail & Related papers (2024-10-28T14:49:17Z) - MedDiff-FM: A Diffusion-based Foundation Model for Versatile Medical Image Applications [10.321593505248341]
This paper introduces a diffusion-based foundation model to address a diverse range of medical image tasks, namely MedDiff-FM.
MedDiff-FM leverages 3D CT images from multiple publicly available datasets, covering anatomical regions from head to abdomen, to pre-train a diffusion foundation model.
Experimental results demonstrate the effectiveness of MedDiff-FM in addressing diverse downstream medical image tasks.
arXiv Detail & Related papers (2024-10-20T16:03:55Z) - LoRKD: Low-Rank Knowledge Decomposition for Medical Foundation Models [59.961172635689664]
"Knowledge Decomposition" aims to improve the performance on specific medical tasks.
We propose a novel framework named Low-Rank Knowledge Decomposition (LoRKD)
LoRKD explicitly separates gradients from different tasks by incorporating low-rank expert modules and efficient knowledge separation convolution.
arXiv Detail & Related papers (2024-09-29T03:56:21Z) - Disease Classification and Impact of Pretrained Deep Convolution Neural Networks on Diverse Medical Imaging Datasets across Imaging Modalities [0.0]
This paper investigates the intricacies of using pretrained deep convolutional neural networks with transfer learning across diverse medical imaging datasets.
It shows that the use of pretrained models as fixed feature extractors yields poor performance irrespective of the datasets.
It is also found that deeper and more complex architectures did not necessarily result in the best performance.
arXiv Detail & Related papers (2024-08-30T04:51:19Z) - Modality-agnostic Domain Generalizable Medical Image Segmentation by Multi-Frequency in Multi-Scale Attention [1.1155836879100416]
We propose a Modality-agnostic Domain Generalizable Network (MADGNet) for medical image segmentation.
MFMSA block refines the process of spatial feature extraction, particularly in capturing boundary features.
E-SDM mitigates information loss in multi-task learning with deep supervision.
arXiv Detail & Related papers (2024-05-10T07:34:36Z) - Training Like a Medical Resident: Context-Prior Learning Toward Universal Medical Image Segmentation [38.61227663176952]
We propose a shift towards universal medical image segmentation, a paradigm aiming to build medical image understanding foundation models.
We develop Hermes, a novel context-prior learning approach to address the challenges of data heterogeneity and annotation differences in medical image segmentation.
arXiv Detail & Related papers (2023-06-04T17:39:08Z) - MedSegDiff-V2: Diffusion based Medical Image Segmentation with
Transformer [53.575573940055335]
We propose a novel Transformer-based Diffusion framework, called MedSegDiff-V2.
We verify its effectiveness on 20 medical image segmentation tasks with different image modalities.
arXiv Detail & Related papers (2023-01-19T03:42:36Z) - Domain Generalization on Medical Imaging Classification using Episodic
Training with Task Augmentation [62.49837463676111]
We propose a novel scheme of episodic training with task augmentation on medical imaging classification.
Motivated by the limited number of source domains in real-world medical deployment, we consider the unique task-level overfitting.
arXiv Detail & Related papers (2021-06-13T03:56:59Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Domain Shift in Computer Vision models for MRI data analysis: An
Overview [64.69150970967524]
Machine learning and computer vision methods are showing good performance in medical imagery analysis.
Yet only a few applications are now in clinical use.
Poor transferability of themodels to data from different sources or acquisition domains is one of the reasons for that.
arXiv Detail & Related papers (2020-10-14T16:34:21Z) - DoFE: Domain-oriented Feature Embedding for Generalizable Fundus Image
Segmentation on Unseen Datasets [96.92018649136217]
We present a novel Domain-oriented Feature Embedding (DoFE) framework to improve the generalization ability of CNNs on unseen target domains.
Our DoFE framework dynamically enriches the image features with additional domain prior knowledge learned from multi-source domains.
Our framework generates satisfying segmentation results on unseen datasets and surpasses other domain generalization and network regularization methods.
arXiv Detail & Related papers (2020-10-13T07:28:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.