Depth-Centric Dehazing and Depth-Estimation from Real-World Hazy Driving Video
- URL: http://arxiv.org/abs/2412.11395v1
- Date: Mon, 16 Dec 2024 02:48:55 GMT
- Title: Depth-Centric Dehazing and Depth-Estimation from Real-World Hazy Driving Video
- Authors: Junkai Fan, Kun Wang, Zhiqiang Yan, Xiang Chen, Shangbing Gao, Jun Li, Jian Yang,
- Abstract summary: We study the challenging problem of simultaneously removing haze and estimating depth from real monocular hazy videos.
We propose a novel depth-centric learning framework that integrates the ASM model with the BCC constraint.
Our key idea is that both ASM and BCC rely on a shared depth estimation network.
- Score: 21.401375515944693
- License:
- Abstract: In this paper, we study the challenging problem of simultaneously removing haze and estimating depth from real monocular hazy videos. These tasks are inherently complementary: enhanced depth estimation improves dehazing via the atmospheric scattering model (ASM), while superior dehazing contributes to more accurate depth estimation through the brightness consistency constraint (BCC). To tackle these intertwined tasks, we propose a novel depth-centric learning framework that integrates the ASM model with the BCC constraint. Our key idea is that both ASM and BCC rely on a shared depth estimation network. This network simultaneously exploits adjacent dehazed frames to enhance depth estimation via BCC and uses the refined depth cues to more effectively remove haze through ASM. Additionally, we leverage a non-aligned clear video and its estimated depth to independently regularize the dehazing and depth estimation networks. This is achieved by designing two discriminator networks: $D_{MFIR}$ enhances high-frequency details in dehazed videos, and $D_{MDR}$ reduces the occurrence of black holes in low-texture regions. Extensive experiments demonstrate that the proposed method outperforms current state-of-the-art techniques in both video dehazing and depth estimation tasks, especially in real-world hazy scenes. Project page: https://fanjunkai1.github.io/projectpage/DCL/index.html.
Related papers
- Deep Neural Networks for Accurate Depth Estimation with Latent Space Features [0.0]
This study introduces a novel depth estimation framework that leverages latent space features within a deep convolutional neural network.
The proposed model features dual encoder-decoder architecture, enabling both color-to-depth and depth-to-depth transformations.
The framework is thoroughly tested using the NYU Depth V2 dataset, where it sets a new benchmark.
arXiv Detail & Related papers (2025-02-17T13:11:35Z) - Marigold-DC: Zero-Shot Monocular Depth Completion with Guided Diffusion [51.69876947593144]
Existing methods for depth completion operate in tightly constrained settings.
Inspired by advances in monocular depth estimation, we reframe depth completion as an image-conditional depth map generation.
Marigold-DC builds on a pretrained latent diffusion model for monocular depth estimation and injects the depth observations as test-time guidance.
arXiv Detail & Related papers (2024-12-18T00:06:41Z) - GAM-Depth: Self-Supervised Indoor Depth Estimation Leveraging a
Gradient-Aware Mask and Semantic Constraints [12.426365333096264]
We propose GAM-Depth, developed upon two novel components: gradient-aware mask and semantic constraints.
The gradient-aware mask enables adaptive and robust supervision for both key areas and textureless regions.
The incorporation of semantic constraints for indoor self-supervised depth estimation improves depth discrepancies at object boundaries.
arXiv Detail & Related papers (2024-02-22T07:53:34Z) - Unveiling the Depths: A Multi-Modal Fusion Framework for Challenging
Scenarios [103.72094710263656]
This paper presents a novel approach that identifies and integrates dominant cross-modality depth features with a learning-based framework.
We propose a novel confidence loss steering a confidence predictor network to yield a confidence map specifying latent potential depth areas.
With the resulting confidence map, we propose a multi-modal fusion network that fuses the final depth in an end-to-end manner.
arXiv Detail & Related papers (2024-02-19T04:39:16Z) - Manydepth2: Motion-Aware Self-Supervised Multi-Frame Monocular Depth Estimation in Dynamic Scenes [45.070725750859786]
We present Manydepth2, to achieve precise depth estimation for both dynamic objects and static backgrounds.
To tackle the challenges posed by dynamic content, we incorporate optical flow and coarse monocular depth to create a pseudo-static reference frame.
This frame is then utilized to build a motion-aware cost volume in collaboration with the vanilla target frame.
arXiv Detail & Related papers (2023-12-23T14:36:27Z) - Uncertainty Guided Depth Fusion for Spike Camera [49.41822923588663]
We propose a novel Uncertainty-Guided Depth Fusion (UGDF) framework to fuse predictions of monocular and stereo depth estimation networks for spike camera.
Our framework is motivated by the fact that stereo spike depth estimation achieves better results at close range.
In order to demonstrate the advantage of spike depth estimation over traditional camera depth estimation, we contribute a spike-depth dataset named CitySpike20K.
arXiv Detail & Related papers (2022-08-26T13:04:01Z) - End-to-end Learning for Joint Depth and Image Reconstruction from
Diffracted Rotation [10.896567381206715]
We propose a novel end-to-end learning approach for depth from diffracted rotation.
Our approach requires a significantly less complex model and less training data, yet it is superior to existing methods in the task of monocular depth estimation.
arXiv Detail & Related papers (2022-04-14T16:14:37Z) - Learning Occlusion-Aware Coarse-to-Fine Depth Map for Self-supervised
Monocular Depth Estimation [11.929584800629673]
We propose a novel network to learn an Occlusion-aware Coarse-to-Fine Depth map for self-supervised monocular depth estimation.
The proposed OCFD-Net does not only employ a discrete depth constraint for learning a coarse-level depth map, but also employ a continuous depth constraint for learning a scene depth residual.
arXiv Detail & Related papers (2022-03-21T12:43:42Z) - Pseudo Supervised Monocular Depth Estimation with Teacher-Student
Network [90.20878165546361]
We propose a new unsupervised depth estimation method based on pseudo supervision mechanism.
It strategically integrates the advantages of supervised and unsupervised monocular depth estimation.
Our experimental results demonstrate that the proposed method outperforms the state-of-the-art on the KITTI benchmark.
arXiv Detail & Related papers (2021-10-22T01:08:36Z) - Weakly-Supervised Monocular Depth Estimationwith Resolution-Mismatched
Data [73.9872931307401]
We propose a novel weakly-supervised framework to train a monocular depth estimation network.
The proposed framework is composed of a sharing weight monocular depth estimation network and a depth reconstruction network for distillation.
Experimental results demonstrate that our method achieves superior performance than unsupervised and semi-supervised learning based schemes.
arXiv Detail & Related papers (2021-09-23T18:04:12Z) - Progressive Depth Learning for Single Image Dehazing [56.71963910162241]
Existing dehazing methods often ignore the depth cues and fail in distant areas where heavier haze disturbs the visibility.
We propose a deep end-to-end model that iteratively estimates image depths and transmission maps.
Our approach benefits from explicitly modeling the inner relationship of image depth and transmission map, which is especially effective for distant hazy areas.
arXiv Detail & Related papers (2021-02-21T05:24:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.