Deep Neural Networks for Accurate Depth Estimation with Latent Space Features
- URL: http://arxiv.org/abs/2502.11777v1
- Date: Mon, 17 Feb 2025 13:11:35 GMT
- Title: Deep Neural Networks for Accurate Depth Estimation with Latent Space Features
- Authors: Siddiqui Muhammad Yasir, Hyunsik Ahn,
- Abstract summary: This study introduces a novel depth estimation framework that leverages latent space features within a deep convolutional neural network.
The proposed model features dual encoder-decoder architecture, enabling both color-to-depth and depth-to-depth transformations.
The framework is thoroughly tested using the NYU Depth V2 dataset, where it sets a new benchmark.
- Score: 0.0
- License:
- Abstract: Depth estimation plays a pivotal role in advancing human-robot interactions, especially in indoor environments where accurate 3D scene reconstruction is essential for tasks like navigation and object handling. Monocular depth estimation, which relies on a single RGB camera, offers a more affordable solution compared to traditional methods that use stereo cameras or LiDAR. However, despite recent progress, many monocular approaches struggle with accurately defining depth boundaries, leading to less precise reconstructions. In response to these challenges, this study introduces a novel depth estimation framework that leverages latent space features within a deep convolutional neural network to enhance the precision of monocular depth maps. The proposed model features dual encoder-decoder architecture, enabling both color-to-depth and depth-to-depth transformations. This structure allows for refined depth estimation through latent space encoding. To further improve the accuracy of depth boundaries and local features, a new loss function is introduced. This function combines latent loss with gradient loss, helping the model maintain the integrity of depth boundaries. The framework is thoroughly tested using the NYU Depth V2 dataset, where it sets a new benchmark, particularly excelling in complex indoor scenarios. The results clearly show that this approach effectively reduces depth ambiguities and blurring, making it a promising solution for applications in human-robot interaction and 3D scene reconstruction.
Related papers
- Revisiting Monocular 3D Object Detection from Scene-Level Depth Retargeting to Instance-Level Spatial Refinement [44.4805861813093]
Monocular 3D object detection is challenging due to the lack of accurate depth.
Existing depth-assisted solutions still exhibit inferior performance.
We propose a novel depth-adapted monocular 3D object detection network.
arXiv Detail & Related papers (2024-12-26T10:51:50Z) - DepthLab: From Partial to Complete [80.58276388743306]
Missing values remain a common challenge for depth data across its wide range of applications.
This work bridges this gap with DepthLab, a foundation depth inpainting model powered by image diffusion priors.
Our approach proves its worth in various downstream tasks, including 3D scene inpainting, text-to-3D scene generation, sparse-view reconstruction with DUST3R, and LiDAR depth completion.
arXiv Detail & Related papers (2024-12-24T04:16:38Z) - GAM-Depth: Self-Supervised Indoor Depth Estimation Leveraging a
Gradient-Aware Mask and Semantic Constraints [12.426365333096264]
We propose GAM-Depth, developed upon two novel components: gradient-aware mask and semantic constraints.
The gradient-aware mask enables adaptive and robust supervision for both key areas and textureless regions.
The incorporation of semantic constraints for indoor self-supervised depth estimation improves depth discrepancies at object boundaries.
arXiv Detail & Related papers (2024-02-22T07:53:34Z) - Boosting Monocular 3D Object Detection with Object-Centric Auxiliary
Depth Supervision [13.593246617391266]
We propose a method to boost the RGB image-based 3D detector by jointly training the detection network with a depth prediction loss analogous to the depth estimation task.
Our novel object-centric depth prediction loss focuses on depth around foreground objects, which is important for 3D object detection.
Our depth regression model is further trained to predict the uncertainty of depth to represent the 3D confidence of objects.
arXiv Detail & Related papers (2022-10-29T11:32:28Z) - MonoJSG: Joint Semantic and Geometric Cost Volume for Monocular 3D
Object Detection [10.377424252002792]
monocular 3D object detection lacks accurate depth recovery ability.
Deep neural network (DNN) enables monocular depth-sensing from high-level learned features.
We propose a joint semantic and geometric cost volume to model the depth error.
arXiv Detail & Related papers (2022-03-16T11:54:10Z) - Joint Learning of Salient Object Detection, Depth Estimation and Contour
Extraction [91.43066633305662]
We propose a novel multi-task and multi-modal filtered transformer (MMFT) network for RGB-D salient object detection (SOD)
Specifically, we unify three complementary tasks: depth estimation, salient object detection and contour estimation. The multi-task mechanism promotes the model to learn the task-aware features from the auxiliary tasks.
Experiments show that it not only significantly surpasses the depth-based RGB-D SOD methods on multiple datasets, but also precisely predicts a high-quality depth map and salient contour at the same time.
arXiv Detail & Related papers (2022-03-09T17:20:18Z) - Weakly-Supervised Monocular Depth Estimationwith Resolution-Mismatched
Data [73.9872931307401]
We propose a novel weakly-supervised framework to train a monocular depth estimation network.
The proposed framework is composed of a sharing weight monocular depth estimation network and a depth reconstruction network for distillation.
Experimental results demonstrate that our method achieves superior performance than unsupervised and semi-supervised learning based schemes.
arXiv Detail & Related papers (2021-09-23T18:04:12Z) - SelfDeco: Self-Supervised Monocular Depth Completion in Challenging
Indoor Environments [50.761917113239996]
We present a novel algorithm for self-supervised monocular depth completion.
Our approach is based on training a neural network that requires only sparse depth measurements and corresponding monocular video sequences without dense depth labels.
Our self-supervised algorithm is designed for challenging indoor environments with textureless regions, glossy and transparent surface, non-Lambertian surfaces, moving people, longer and diverse depth ranges and scenes captured by complex ego-motions.
arXiv Detail & Related papers (2020-11-10T08:55:07Z) - Accurate RGB-D Salient Object Detection via Collaborative Learning [101.82654054191443]
RGB-D saliency detection shows impressive ability on some challenge scenarios.
We propose a novel collaborative learning framework where edge, depth and saliency are leveraged in a more efficient way.
arXiv Detail & Related papers (2020-07-23T04:33:36Z) - Occlusion-Aware Depth Estimation with Adaptive Normal Constraints [85.44842683936471]
We present a new learning-based method for multi-frame depth estimation from a color video.
Our method outperforms the state-of-the-art in terms of depth estimation accuracy.
arXiv Detail & Related papers (2020-04-02T07:10:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.