RL-LLM-DT: An Automatic Decision Tree Generation Method Based on RL Evaluation and LLM Enhancement
- URL: http://arxiv.org/abs/2412.11417v2
- Date: Tue, 17 Dec 2024 04:04:12 GMT
- Title: RL-LLM-DT: An Automatic Decision Tree Generation Method Based on RL Evaluation and LLM Enhancement
- Authors: Junjie Lin, Jian Zhao, Lin Liu, Yue Deng, Youpeng Zhao, Lanxiao Huang, Xia Lin, Wengang Zhou, Houqiang Li,
- Abstract summary: We propose RL-LLM-DT, an automatic decision tree generation method based on RL Evaluation and LLM Enhancement.
To evaluate the effectiveness of this integrated approach, we conducted experiments in a curling game.
- Score: 82.02155942106877
- License:
- Abstract: Traditionally, AI development for two-player zero-sum games has relied on two primary techniques: decision trees and reinforcement learning (RL). A common approach involves using a fixed decision tree as one player's strategy while training an RL agent as the opponent to identify vulnerabilities in the decision tree, thereby improving its strategic strength iteratively. However, this process often requires significant human intervention to refine the decision tree after identifying its weaknesses, resulting in inefficiencies and hindering full automation of the strategy enhancement process. Fortunately, the advent of Large Language Models (LLMs) offers a transformative opportunity to automate the process. We propose RL-LLM-DT, an automatic decision tree generation method based on RL Evaluation and LLM Enhancement. Given an initial decision tree, the method involves two important iterative steps. Response Policy Search: RL is used to discover counter-strategies targeting the decision tree. Policy Improvement: LLMs analyze failure scenarios and generate improved decision tree code. In our method, RL focuses on finding the decision tree's flaws while LLM is prompted to generate an improved version of the decision tree. The iterative refinement process terminates when RL can't find any flaw of the tree or LLM fails to improve the tree. To evaluate the effectiveness of this integrated approach, we conducted experiments in a curling game. After iterative refinements, our curling AI based on the decision tree ranks first on the Jidi platform among 34 curling AIs in total, which demonstrates that LLMs can significantly enhance the robustness and adaptability of decision trees, representing a substantial advancement in the field of Game AI. Our code is available at https://github.com/Linjunjie99/RL-LLM-DT.
Related papers
- GPTree: Towards Explainable Decision-Making via LLM-powered Decision Trees [0.0]
GPTree is a novel framework combining explainability of decision trees with the advanced reasoning capabilities of LLMs.
Our decision tree achieved a 7.8% precision rate for identifying "unicorn" startups at the inception stage of a startup.
arXiv Detail & Related papers (2024-11-13T00:14:09Z) - Optimizing Interpretable Decision Tree Policies for Reinforcement Learning [10.68128849363198]
Decision trees have gained increased attention in supervised learning for their inherent interpretability.
This paper considers the problem of optimizing interpretable decision tree policies to replace neural networks in reinforcement learning settings.
arXiv Detail & Related papers (2024-08-21T14:04:00Z) - ReST-MCTS*: LLM Self-Training via Process Reward Guided Tree Search [50.45155830888697]
We develop a reinforced self-training approach, called ReST-MCTS*, based on integrating process reward guidance with tree search MCTS* for collecting higher-quality reasoning traces as well as per-step value to train policy and reward models.
We first show that the tree-search policy in ReST-MCTS* achieves higher accuracy compared with prior LLM reasoning baselines such as Best-of-N and Tree-of-Thought, within the same search budget.
arXiv Detail & Related papers (2024-06-06T07:40:00Z) - ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL [80.10358123795946]
We develop a framework for building multi-turn RL algorithms for fine-tuning large language models.
Our framework adopts a hierarchical RL approach and runs two RL algorithms in parallel.
Empirically, we find that ArCHer significantly improves efficiency and performance on agent tasks.
arXiv Detail & Related papers (2024-02-29T18:45:56Z) - Solving Offline Reinforcement Learning with Decision Tree Regression [0.0]
This study presents a novel approach to addressing offline reinforcement learning problems by reframing them as regression tasks.
We introduce two distinct frameworks: return-conditioned and return-weighted decision tree policies.
Despite the simplification inherent in this reformulated approach to offline RL, our agents demonstrate performance that is at least on par with the established methods.
arXiv Detail & Related papers (2024-01-21T23:50:46Z) - Autonomous Tree-search Ability of Large Language Models [58.68735916408101]
Large Language Models have excelled in remarkable reasoning capabilities with advanced prompting techniques.
Recent works propose to utilize external programs to define search logic, such that LLMs can perform passive tree search to solve more challenging reasoning tasks.
We propose a new concept called autonomous tree-search ability of LLM, which can automatically generate a response containing search trajectories for the correct answer.
arXiv Detail & Related papers (2023-10-14T14:14:38Z) - Alphazero-like Tree-Search can Guide Large Language Model Decoding and
Training [37.79247073276239]
Recent works like Tree-of-Thought (ToT) and Reasoning via Planning (RAP) aim to augment the reasoning capabilities of LLMs.
We present an AlphaZero-like tree-search learning framework for LLMs (termed TS-LLM)
We show how tree-search with a learned value function can guide LLM decoding.
arXiv Detail & Related papers (2023-09-29T12:20:19Z) - TreeDQN: Learning to minimize Branch-and-Bound tree [78.52895577861327]
Branch-and-Bound is a convenient approach to solving optimization tasks in the form of Mixed Linear Programs.
The efficiency of the solver depends on the branchning used to select a variable for splitting.
We propose a reinforcement learning method that can efficiently learn the branching.
arXiv Detail & Related papers (2023-06-09T14:01:26Z) - Optimal Decision Tree Policies for Markov Decision Processes [7.995360025953931]
We study the optimization of size-limited decision trees for Markov Decision Processes (MPDs)
We show that this is due to an inherent shortcoming of imitation learning, namely that complex policies cannot be represented using size-limited trees.
While there is generally a trade-off between the performance and interpretability of machine learning models, we find that OMDTs limited to a depth of 3 often perform close to the optimal limit.
arXiv Detail & Related papers (2023-01-30T18:51:02Z) - Reinforcement Learning for Branch-and-Bound Optimisation using
Retrospective Trajectories [72.15369769265398]
Machine learning has emerged as a promising paradigm for branching.
We propose retro branching; a simple yet effective approach to RL for branching.
We outperform the current state-of-the-art RL branching algorithm by 3-5x and come within 20% of the best IL method's performance on MILPs with 500 constraints and 1000 variables.
arXiv Detail & Related papers (2022-05-28T06:08:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.