Block-Based Multi-Scale Image Rescaling
- URL: http://arxiv.org/abs/2412.11468v1
- Date: Mon, 16 Dec 2024 06:03:56 GMT
- Title: Block-Based Multi-Scale Image Rescaling
- Authors: Jian Li, Siwang Zhou,
- Abstract summary: Image rescaling (IR) seeks to determine the optimal low-resolution representation of a high-resolution (HR) image to reconstruct a high-quality super-resolution (SR) image.
Traditional image rescaling methods often fall short because they focus solely on the overall scaling rate, ignoring the varying amounts of information in different parts of the image.
We propose a Block-Based Multi-Scale Image Rescaling Framework (BBMR) to address this limitation.
- Score: 7.57129147865564
- License:
- Abstract: Image rescaling (IR) seeks to determine the optimal low-resolution (LR) representation of a high-resolution (HR) image to reconstruct a high-quality super-resolution (SR) image. Typically, HR images with resolutions exceeding 2K possess rich information that is unevenly distributed across the image. Traditional image rescaling methods often fall short because they focus solely on the overall scaling rate, ignoring the varying amounts of information in different parts of the image. To address this limitation, we propose a Block-Based Multi-Scale Image Rescaling Framework (BBMR), tailored for IR tasks involving HR images of 2K resolution and higher. BBMR consists of two main components: the Downscaling Module and the Upscaling Module. In the Downscaling Module, the HR image is segmented into sub-blocks of equal size, with each sub-block receiving a dynamically allocated scaling rate while maintaining a constant overall scaling rate. For the Upscaling Module, we introduce the Joint Super-Resolution method (JointSR), which performs SR on these sub-blocks with varying scaling rates and effectively eliminates blocking artifacts. Experimental results demonstrate that BBMR significantly enhances the SR image quality on the of 2K and 4K test dataset compared to initial network image rescaling methods.
Related papers
- Plug-and-Play Tri-Branch Invertible Block for Image Rescaling [11.457556028893329]
High-resolution (HR) images are commonly downscaled to low-resolution (LR) to reduce bandwidth, followed by upscaling to restore their original details.
Recent advancements in image rescaling algorithms have employed invertible neural networks (INNs) to create a unified framework for downscaling and upscaling.
We propose a plug-and-play tri-branch invertible block (T-InvBlocks) that decomposes the low-frequency branch into luminance (Y) and chrominance (CbCr) components.
arXiv Detail & Related papers (2024-12-18T05:14:13Z) - Efficient Model Agnostic Approach for Implicit Neural Representation
Based Arbitrary-Scale Image Super-Resolution [5.704360536038803]
Single image super-resolution (SISR) has experienced significant advancements, primarily driven by deep convolutional networks.
Traditional networks are limited to upscaling images to a fixed scale, leading to the utilization of implicit neural functions for generating arbitrarily scaled images.
We introduce a novel and efficient framework, the Mixture of Experts Implicit Super-Resolution (MoEISR), which enables super-resolution at arbitrary scales.
arXiv Detail & Related papers (2023-11-20T05:34:36Z) - Learning Many-to-Many Mapping for Unpaired Real-World Image
Super-resolution and Downscaling [60.80788144261183]
We propose an image downscaling and SR model dubbed as SDFlow, which simultaneously learns a bidirectional many-to-many mapping between real-world LR and HR images unsupervisedly.
Experimental results on real-world image SR datasets indicate that SDFlow can generate diverse realistic LR and SR images both quantitatively and qualitatively.
arXiv Detail & Related papers (2023-10-08T01:48:34Z) - Learning Resolution-Adaptive Representations for Cross-Resolution Person
Re-Identification [49.57112924976762]
Cross-resolution person re-identification problem aims to match low-resolution (LR) query identity images against high resolution (HR) gallery images.
It is a challenging and practical problem since the query images often suffer from resolution degradation due to the different capturing conditions from real-world cameras.
This paper explores an alternative SR-free paradigm to directly compare HR and LR images via a dynamic metric, which is adaptive to the resolution of a query image.
arXiv Detail & Related papers (2022-07-09T03:49:51Z) - Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
A hierarchical image super-resolution network (HSRNet) is proposed to suppress the influence of aliasing.
HSRNet achieves better quantitative and visual performance than other works, and remits the aliasing more effectively.
arXiv Detail & Related papers (2022-06-07T14:55:32Z) - Memory-augmented Deep Unfolding Network for Guided Image
Super-resolution [67.83489239124557]
Guided image super-resolution (GISR) aims to obtain a high-resolution (HR) target image by enhancing the spatial resolution of a low-resolution (LR) target image under the guidance of a HR image.
Previous model-based methods mainly takes the entire image as a whole, and assume the prior distribution between the HR target image and the HR guidance image.
We propose a maximal a posterior (MAP) estimation model for GISR with two types of prior on the HR target image.
arXiv Detail & Related papers (2022-02-12T15:37:13Z) - Scale-arbitrary Invertible Image Downscaling [17.67415618760949]
We propose a scale-Arbitrary Invertible image Downscaling Network (AIDN) to downscale HR images with arbitrary scale factors.
Our AIDN achieves top performance for invertible downscaling with both arbitrary integer and non-integer scale factors.
arXiv Detail & Related papers (2022-01-29T12:27:52Z) - Hierarchical Conditional Flow: A Unified Framework for Image
Super-Resolution and Image Rescaling [139.25215100378284]
We propose a hierarchical conditional flow (HCFlow) as a unified framework for image SR and image rescaling.
HCFlow learns a mapping between HR and LR image pairs by modelling the distribution of the LR image and the rest high-frequency component simultaneously.
To further enhance the performance, other losses such as perceptual loss and GAN loss are combined with the commonly used negative log-likelihood loss in training.
arXiv Detail & Related papers (2021-08-11T16:11:01Z) - DDet: Dual-path Dynamic Enhancement Network for Real-World Image
Super-Resolution [69.2432352477966]
Real image super-resolution(Real-SR) focus on the relationship between real-world high-resolution(HR) and low-resolution(LR) image.
In this article, we propose a Dual-path Dynamic Enhancement Network(DDet) for Real-SR.
Unlike conventional methods which stack up massive convolutional blocks for feature representation, we introduce a content-aware framework to study non-inherently aligned image pair.
arXiv Detail & Related papers (2020-02-25T18:24:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.