SRR-Net: A Super-Resolution-Involved Reconstruction Method for High
Resolution MR Imaging
- URL: http://arxiv.org/abs/2104.05901v1
- Date: Tue, 13 Apr 2021 02:19:12 GMT
- Title: SRR-Net: A Super-Resolution-Involved Reconstruction Method for High
Resolution MR Imaging
- Authors: Wenqi Huang, Sen Jia, Ziwen Ke, Zhuo-Xu Cui, Jing Cheng, Yanjie Zhu
and Dong Liang
- Abstract summary: The proposed SRR-Net is capable of recovering high-resolution brain images with both good visual quality and perceptual quality.
Experiment results using in-vivo HR multi-coil brain data indicate that the proposed SRR-Net is capable of recovering high-resolution brain images.
- Score: 7.42807471627113
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Improving the image resolution and acquisition speed of magnetic resonance
imaging (MRI) is a challenging problem. There are mainly two strategies dealing
with the speed-resolution trade-off: (1) $k$-space undersampling with
high-resolution acquisition, and (2) a pipeline of lower resolution image
reconstruction and image super-resolution. However, these approaches either
have limited performance at certain high acceleration factor or suffer from the
error accumulation of two-step structure. In this paper, we combine the idea of
MR reconstruction and image super-resolution, and work on recovering HR images
from low-resolution under-sampled $k$-space data directly. Particularly, the
SR-involved reconstruction can be formulated as a variational problem, and a
learnable network unrolled from its solution algorithm is proposed. A
discriminator was introduced to enhance the detail refining performance.
Experiment results using in-vivo HR multi-coil brain data indicate that the
proposed SRR-Net is capable of recovering high-resolution brain images with
both good visual quality and perceptual quality.
Related papers
- Learning Two-factor Representation for Magnetic Resonance Image Super-resolution [1.294284364022674]
We propose a novel method for MR image super-resolution based on two-factor representation.
Specifically, we factorize intensity signals into a linear combination of learnable basis and coefficient factors.
Our method achieves state-of-the-art performance, providing superior visual fidelity and robustness.
arXiv Detail & Related papers (2024-09-15T13:32:24Z) - Dual Arbitrary Scale Super-Resolution for Multi-Contrast MRI [23.50915512118989]
Multi-contrast Super-Resolution (SR) reconstruction is promising to yield SR images with higher quality.
radiologists are accustomed to zooming the MR images at arbitrary scales rather than using a fixed scale.
We propose an implicit neural representations based dual-arbitrary multi-contrast MRI super-resolution method, called Dual-ArbNet.
arXiv Detail & Related papers (2023-07-05T14:43:26Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
We show how to unfold an iterative MGDUN algorithm into a novel model-guided deep unfolding network by taking the MRI observation matrix.
In this paper, we propose a novel Model-Guided interpretable Deep Unfolding Network (MGDUN) for medical image SR reconstruction.
arXiv Detail & Related papers (2022-09-15T03:58:30Z) - Single MR Image Super-Resolution using Generative Adversarial Network [0.696125353550498]
Real Enhanced Super Resolution Generative Adrial Network (Real-ESRGAN) is one of the recent effective approaches utilized to produce higher resolution images.
In this paper, we apply this method to enhance the spatial resolution of 2D MR images.
arXiv Detail & Related papers (2022-07-16T23:15:10Z) - Learning Resolution-Adaptive Representations for Cross-Resolution Person
Re-Identification [49.57112924976762]
Cross-resolution person re-identification problem aims to match low-resolution (LR) query identity images against high resolution (HR) gallery images.
It is a challenging and practical problem since the query images often suffer from resolution degradation due to the different capturing conditions from real-world cameras.
This paper explores an alternative SR-free paradigm to directly compare HR and LR images via a dynamic metric, which is adaptive to the resolution of a query image.
arXiv Detail & Related papers (2022-07-09T03:49:51Z) - Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
A hierarchical image super-resolution network (HSRNet) is proposed to suppress the influence of aliasing.
HSRNet achieves better quantitative and visual performance than other works, and remits the aliasing more effectively.
arXiv Detail & Related papers (2022-06-07T14:55:32Z) - Real-World Image Super-Resolution by Exclusionary Dual-Learning [98.36096041099906]
Real-world image super-resolution is a practical image restoration problem that aims to obtain high-quality images from in-the-wild input.
Deep learning-based methods have achieved promising restoration quality on real-world image super-resolution datasets.
We propose Real-World image Super-Resolution by Exclusionary Dual-Learning (RWSR-EDL) to address the feature diversity in perceptual- and L1-based cooperative learning.
arXiv Detail & Related papers (2022-06-06T13:28:15Z) - Cross-Modality High-Frequency Transformer for MR Image Super-Resolution [100.50972513285598]
We build an early effort to build a Transformer-based MR image super-resolution framework.
We consider two-fold domain priors including the high-frequency structure prior and the inter-modality context prior.
We establish a novel Transformer architecture, called Cross-modality high-frequency Transformer (Cohf-T), to introduce such priors into super-resolving the low-resolution images.
arXiv Detail & Related papers (2022-03-29T07:56:55Z) - HDNet: High-resolution Dual-domain Learning for Spectral Compressive
Imaging [138.04956118993934]
We propose a high-resolution dual-domain learning network (HDNet) for HSI reconstruction.
On the one hand, the proposed HR spatial-spectral attention module with its efficient feature fusion provides continuous and fine pixel-level features.
On the other hand, frequency domain learning (FDL) is introduced for HSI reconstruction to narrow the frequency domain discrepancy.
arXiv Detail & Related papers (2022-03-04T06:37:45Z) - Dual Perceptual Loss for Single Image Super-Resolution Using ESRGAN [13.335546116599494]
This paper proposes a method called Dual Perceptual Loss (DP Loss) to replace the original perceptual loss to solve the problem of single image super-resolution reconstruction.
Due to the complementary property between the VGG features and the ResNet features, the proposed DP Loss considers the advantages of learning two features simultaneously.
The qualitative and quantitative analysis on benchmark datasets demonstrates the superiority of our proposed method over state-of-the-art super-resolution methods.
arXiv Detail & Related papers (2022-01-17T12:42:56Z) - High-Resolution Pelvic MRI Reconstruction Using a Generative Adversarial
Network with Attention and Cyclic Loss [3.4358954898228604]
Super-resolution methods have shown excellent performance in accelerating MRI.
In some circumstances, it is difficult to obtain high-resolution images even with prolonged scan time.
We proposed a novel super-resolution method that uses a generative adversarial network (GAN) with cyclic loss and attention mechanism.
arXiv Detail & Related papers (2021-07-21T10:07:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.