論文の概要: SPaR: Self-Play with Tree-Search Refinement to Improve Instruction-Following in Large Language Models
- arxiv url: http://arxiv.org/abs/2412.11605v1
- Date: Mon, 16 Dec 2024 09:47:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 14:02:50.273135
- Title: SPaR: Self-Play with Tree-Search Refinement to Improve Instruction-Following in Large Language Models
- Title(参考訳): SPaR: 大規模言語モデルにおけるインストラクションフォローを改善するツリー検索リファインメントによるセルフプレイ
- Authors: Jiale Cheng, Xiao Liu, Cunxiang Wang, Xiaotao Gu, Yida Lu, Dan Zhang, Yuxiao Dong, Jie Tang, Hongning Wang, Minlie Huang,
- Abstract要約: SPaRは、木探索の自己制限を統合したセルフプレイフレームワークで、気を散らさずに有効かつ同等の選好ペアを得る。
実験により,SPaRで誘導された3回の反復で訓練されたLLaMA3-8Bモデルが,一般機能を失うことなくIFEvalベンチマークでGPT-4-Turboを上回った。
- 参考スコア(独自算出の注目度): 88.29990536278167
- License:
- Abstract: Instruction-following is a fundamental capability of language models, requiring the model to recognize even the most subtle requirements in the instructions and accurately reflect them in its output. Such an ability is well-suited for and often optimized by preference learning. However, existing methods often directly sample multiple independent responses from the model when creating preference pairs. Such practice can introduce content variations irrelevant to whether the instruction is precisely followed (e.g., different expressions about the same semantic), interfering with the goal of teaching models to recognize the key differences that lead to improved instruction following. In light of this, we introduce SPaR, a self-play framework integrating tree-search self-refinement to yield valid and comparable preference pairs free from distractions. By playing against itself, an LLM employs a tree-search strategy to refine its previous responses with respect to the instruction while minimizing unnecessary variations. Our experiments show that a LLaMA3-8B model, trained over three iterations guided by SPaR, surpasses GPT-4-Turbo on the IFEval benchmark without losing general capabilities. Furthermore, SPaR demonstrates promising scalability and transferability, greatly enhancing models like GLM-4-9B and LLaMA3-70B. We also identify how inference scaling in tree search would impact model performance. Our code and data are publicly available at https://github.com/thu-coai/SPaR.
- Abstract(参考訳): 命令追従は言語モデルの基本的な能力であり、命令の最も微妙な要求さえ認識し、その出力を正確に反映する必要がある。
このような能力は好みの学習に適しており、しばしば最適化される。
しかしながら、既存のメソッドは、好みのペアを作成する際に、モデルから直接複数の独立したレスポンスをサンプリングすることが多い。
このような実践は、命令が正確に従うかどうか(例えば、同じ意味に関する異なる表現)に関係なく、内容のバリエーションを導入し、モデルに命令に従うことにつながる重要な違いを認識することの目標に干渉する。
そこで本研究では,木探索による自己制限を統合したセルフプレイフレームワークであるSPaRを導入する。
LLMは、自身と対戦することで、不要なバリエーションを最小限に抑えながら、命令に対する以前の応答を洗練するために、ツリー検索戦略を採用する。
実験の結果,SPaRで誘導される3回の反復で訓練されたLLaMA3-8Bモデルが,一般機能を失うことなくIFEvalベンチマークでGPT-4-Turboを上回った。
さらに、SPaRは拡張性と転送性を示し、GLM-4-9BやLLaMA3-70Bのようなモデルを大幅に強化した。
また,木探索における推論のスケーリングがモデルの性能に与える影響も確認した。
私たちのコードとデータはhttps://github.com/thu-coai/SPaR.comで公開されています。
関連論文リスト
- Instruction-Following Pruning for Large Language Models [58.329978053711024]
我々は、モデルに対する固定的なプルーニングマスクを決定する従来の静的プルーニングアプローチを超えて移動する。
本手法では,プルーニングマスクは入力依存型であり,ユーザ命令に記述された情報に基づいて動的に適応する。
我々の手法は「命令追従プルーニング」と呼ばれ、ユーザ命令を入力とし、与えられたタスクに対して最も関連性の高いモデルパラメータを動的に選択するスパースマスク予測器を導入している。
論文 参考訳(メタデータ) (2025-01-03T20:19:14Z) - Self-Exploring Language Models: Active Preference Elicitation for Online Alignment [88.56809269990625]
本研究では, 分布域外領域を積極的に探索するために, 潜在的に高次応答に対して楽観的に偏りを呈する2段階的客観性を提案する。
実験の結果,Zephyr-7B-SFTとLlama-3-8B-Instructモデルで微調整した場合,SELM(Self-Exploring Language Models)は命令追従ベンチマークの性能を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2024-05-29T17:59:07Z) - LLMs can learn self-restraint through iterative self-reflection [57.26854891567574]
大規模言語モデル(LLM)は、特定のトピックに関連する知識と不確実性に基づいて、その振る舞いを動的に適応できなければならない。
この適応的行動は、私たちが自己規制と呼ぶもので、教えるのは簡単ではない。
モデルが信頼している場合にのみ応答を生成できるようにするユーティリティ関数を考案する。
論文 参考訳(メタデータ) (2024-05-15T13:35:43Z) - LLM-augmented Preference Learning from Natural Language [19.700169351688768]
大規模言語モデル(LLM)は、より大きな文脈長を扱う。
LLM は、ターゲットテキストが大きければ SotA を一貫して上回る。
ゼロショット学習よりもパフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-10-12T17:17:27Z) - Mixture-of-Experts Meets Instruction Tuning:A Winning Combination for
Large Language Models [125.91897197446379]
MoEモデルは高密度モデルよりも命令チューニングの恩恵を受ける。
我々の最も強力なモデルであるFLAN-MOE-32Bは、4つのベンチマークタスクにおけるFLAN-PALM-62Bの性能を上回る。
論文 参考訳(メタデータ) (2023-05-24T04:22:26Z) - CodeGen2: Lessons for Training LLMs on Programming and Natural Languages [116.74407069443895]
我々はエンコーダとデコーダベースのモデルを単一のプレフィックスLMに統一する。
学習方法は,「フリーランチ」仮説の主張を考察する。
データ配信においては,混合分布と多言語学習がモデル性能に及ぼす影響について検討した。
論文 参考訳(メタデータ) (2023-05-03T17:55:25Z) - DeforestVis: Behavior Analysis of Machine Learning Models with Surrogate Decision Stumps [46.58231605323107]
複雑なMLモデルの振る舞いを要約する視覚解析ツールであるDeforestVisを提案する。
DeforestVisは、より多くの切り株をインクリメンタルに生成することで、複雑さとフィデリティのトレードオフを探索するのに役立つ。
DeforestVisの適用性と有用性について,2つのユースケースと,データアナリストとモデル開発者とのエキスパートインタビューで紹介する。
論文 参考訳(メタデータ) (2023-03-31T21:17:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。