BioBridge: Unified Bio-Embedding with Bridging Modality in Code-Switched EMR
- URL: http://arxiv.org/abs/2412.11671v1
- Date: Mon, 16 Dec 2024 11:24:54 GMT
- Title: BioBridge: Unified Bio-Embedding with Bridging Modality in Code-Switched EMR
- Authors: Jangyeong Jeon, Sangyeon Cho, Dongjoon Lee, Changhee Lee, Junyeong Kim,
- Abstract summary: This paper introduces the BioBridge framework, a novel approach that applies Natural Language Processing (NLP) to Electronic Medical Records (EMRs) in written free-text form.<n>In non-English speaking countries, such as South Korea, EMR data is often written in a Code-Switching (CS) format that mixes the native language with English, with most code-switched English words having clinical significance.<n>The BioBridge framework consists of two core modules: "bridging modality in context" and "unified bio-embedding"
- Score: 8.328673243329794
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pediatric Emergency Department (PED) overcrowding presents a significant global challenge, prompting the need for efficient solutions. This paper introduces the BioBridge framework, a novel approach that applies Natural Language Processing (NLP) to Electronic Medical Records (EMRs) in written free-text form to enhance decision-making in PED. In non-English speaking countries, such as South Korea, EMR data is often written in a Code-Switching (CS) format that mixes the native language with English, with most code-switched English words having clinical significance. The BioBridge framework consists of two core modules: "bridging modality in context" and "unified bio-embedding." The "bridging modality in context" module improves the contextual understanding of bilingual and code-switched EMRs. In the "unified bio-embedding" module, the knowledge of the model trained in the medical domain is injected into the encoder-based model to bridge the gap between the medical and general domains. Experimental results demonstrate that the proposed BioBridge significantly performance traditional machine learning and pre-trained encoder-based models on several metrics, including F1 score, area under the receiver operating characteristic curve (AUROC), area under the precision-recall curve (AUPRC), and Brier score. Specifically, BioBridge-XLM achieved enhancements of 0.85% in F1 score, 0.75% in AUROC, and 0.76% in AUPRC, along with a notable 3.04% decrease in the Brier score, demonstrating marked improvements in accuracy, reliability, and prediction calibration over the baseline XLM model. The source code will be made publicly available.
Related papers
- Multi-level biomedical NER through multi-granularity embeddings and
enhanced labeling [3.8599767910528917]
This paper proposes a hybrid approach that integrates the strengths of multiple models.
BERT provides contextualized word embeddings, a pre-trained multi-channel CNN for character-level information capture, and following by a BiLSTM + CRF for sequence labelling and modelling dependencies between the words in the text.
We evaluate our model on the benchmark i2b2/2010 dataset, achieving an F1-score of 90.11.
arXiv Detail & Related papers (2023-12-24T21:45:36Z) - Diversifying Knowledge Enhancement of Biomedical Language Models using
Adapter Modules and Knowledge Graphs [54.223394825528665]
We develop an approach that uses lightweight adapter modules to inject structured biomedical knowledge into pre-trained language models.
We use two large KGs, the biomedical knowledge system UMLS and the novel biochemical OntoChem, with two prominent biomedical PLMs, PubMedBERT and BioLinkBERT.
We show that our methodology leads to performance improvements in several instances while keeping requirements in computing power low.
arXiv Detail & Related papers (2023-12-21T14:26:57Z) - Deep Representation Learning for Open Vocabulary
Electroencephalography-to-Text Decoding [6.014363449216054]
We present an end-to-end deep learning framework for non-invasive brain recordings that brings modern representational learning approaches to neuroscience.
Our model achieves a BLEU-1 score of 42.75%, a ROUGE-1-F of 33.28%, and a BERTScore-F of 53.86%, outperforming the previous state-of-the-art methods by 3.38%, 8.43%, and 6.31%, respectively.
arXiv Detail & Related papers (2023-11-15T08:03:09Z) - Investigating Large Language Models and Control Mechanisms to Improve Text Readability of Biomedical Abstracts [16.05119302860606]
We investigate the ability of state-of-the-art large language models (LLMs) on the task of biomedical abstract simplification.
The methods applied include domain fine-tuning and prompt-based learning (PBL)
We used a range of automatic evaluation metrics, including BLEU, ROUGE, SARI, and BERTscore, and also conducted human evaluations.
arXiv Detail & Related papers (2023-09-22T22:47:32Z) - BELT:Bootstrapping Electroencephalography-to-Language Decoding and
Zero-Shot Sentiment Classification by Natural Language Supervision [31.382825932199935]
The proposed BELT method is a generic and efficient framework that bootstraps EEG representation learning.
With a large LM's capacity for understanding semantic information and zero-shot generalization, BELT utilizes large LMs trained on Internet-scale datasets.
We achieve state-of-the-art results on two featuring brain decoding tasks including the brain-to-language translation and zero-shot sentiment classification.
arXiv Detail & Related papers (2023-09-21T13:24:01Z) - Few-Shot Cross-lingual Transfer for Coarse-grained De-identification of
Code-Mixed Clinical Texts [56.72488923420374]
Pre-trained language models (LMs) have shown great potential for cross-lingual transfer in low-resource settings.
We show the few-shot cross-lingual transfer property of LMs for named recognition (NER) and apply it to solve a low-resource and real-world challenge of code-mixed (Spanish-Catalan) clinical notes de-identification in the stroke.
arXiv Detail & Related papers (2022-04-10T21:46:52Z) - Confidence Based Bidirectional Global Context Aware Training Framework
for Neural Machine Translation [74.99653288574892]
We propose a Confidence Based Bidirectional Global Context Aware (CBBGCA) training framework for neural machine translation (NMT)
Our proposed CBBGCA training framework significantly improves the NMT model by +1.02, +1.30 and +0.57 BLEU scores on three large-scale translation datasets.
arXiv Detail & Related papers (2022-02-28T10:24:22Z) - CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark [51.38557174322772]
We present the first Chinese Biomedical Language Understanding Evaluation benchmark.
It is a collection of natural language understanding tasks including named entity recognition, information extraction, clinical diagnosis normalization, single-sentence/sentence-pair classification.
We report empirical results with the current 11 pre-trained Chinese models, and experimental results show that state-of-the-art neural models perform by far worse than the human ceiling.
arXiv Detail & Related papers (2021-06-15T12:25:30Z) - Explicit Alignment Objectives for Multilingual Bidirectional Encoders [111.65322283420805]
We present a new method for learning multilingual encoders, AMBER (Aligned Multilingual Bi-directional EncodeR)
AMBER is trained on additional parallel data using two explicit alignment objectives that align the multilingual representations at different granularities.
Experimental results show that AMBER obtains gains of up to 1.1 average F1 score on sequence tagging and up to 27.3 average accuracy on retrieval over the XLMR-large model.
arXiv Detail & Related papers (2020-10-15T18:34:13Z) - Performance of Dual-Augmented Lagrangian Method and Common Spatial
Patterns applied in classification of Motor-Imagery BCI [68.8204255655161]
Motor-imagery based brain-computer interfaces (MI-BCI) have the potential to become ground-breaking technologies for neurorehabilitation.
Due to the noisy nature of the used EEG signal, reliable BCI systems require specialized procedures for features optimization and extraction.
arXiv Detail & Related papers (2020-10-13T20:50:13Z) - CBAG: Conditional Biomedical Abstract Generation [1.2633386045916442]
We propose a transformer-based conditional language model with a shallow encoder "condition" stack, and a deep "language model" stack of multi-headed attention blocks.
We generate biomedical abstracts given only a proposed title, an intended publication year, and a set of keywords.
arXiv Detail & Related papers (2020-02-13T17:11:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.