The fate of Wannier-Stark localization and skin effect in periodically driven non-Hermitian quasiperiodic lattices
- URL: http://arxiv.org/abs/2412.11740v1
- Date: Mon, 16 Dec 2024 13:01:35 GMT
- Title: The fate of Wannier-Stark localization and skin effect in periodically driven non-Hermitian quasiperiodic lattices
- Authors: Aditi Chakrabarty, Sanjoy Datta,
- Abstract summary: We show that when the electric field is slowly modulated with time, new non-trivial phases with multiple mobility edges emerge in place of WS localized phase.
For a large driving frequency, we retrieve the usual sharp delocalization-localization transition to the usual (no WS) localized phase.
In addition, in the presence of the drive, the skin states are found to be multifractal, contrary to its usual nature in such non-Hermitian systems.
- Score: 0.0
- License:
- Abstract: The eigenstates of one-dimensional Hermitian and non-Hermitian tight-binding systems (in the presence/absence of quasiperiodic potential) and an external electric field undergo complete localization with equally spaced eigenenergies, known as the Wannier-Stark (WS) localization. In this work, we demonstrate that when the electric field is slowly modulated with time, new non-trivial phases with multiple mobility edges emerge in place of WS localized phase, which persists up to a certain strength of the non-Hermiticity. On the other hand, for a large driving frequency, we retrieve the usual sharp delocalization-localization transition to the usual (no WS) localized phase, similar to the static non-Hermitian Aubry-Andr\'e-Harper type without any electric field. This vanishing of WS localization can be attributed solely to the time-periodic drive and occurs irrespective of the non-Hermiticity. Interestingly, under the open boundary condition (OBC), we find that contrary to the undriven systems where an external electric field destroys the SE completely, the SE appears in certain regime of the parameter space when the electric field is temporally driven. This appearance of SE is closely related to the absence of extended unitarity. In addition, in the presence of the drive, the skin states are found to be multifractal, contrary to its usual nature in such non-Hermitian systems. An in-depth understanding about the behavior of the states in the driven system is established from the long-time dynamics of an initial excitation.
Related papers
- Gapless Floquet topology [40.2428948628001]
We study the existence of topological edge zero- and pi-modes despite the lack of bulk gaps in the quasienergy spectrum.
We numerically study the effect of interactions, which give a finite lifetime to the edge modes in the thermodynamic limit with the decay rate consistent with Fermi's Golden Rule.
arXiv Detail & Related papers (2024-11-04T19:05:28Z) - Extended unitarity and absence of skin effect in periodically driven systems [0.0]
A time-periodic drive in such systems can eliminate the SE up to a finite strength of this asymmetry.
We find that the absence of SE is intricately linked to the emergence of extended unitarity in the delocalized phase.
We propose a possible experimental realization of our driven system, which could be used as a switch to control the light funneling mechanism.
arXiv Detail & Related papers (2024-04-18T16:22:45Z) - Dynamics of inhomogeneous spin ensembles with all-to-all interactions:
breaking permutational invariance [49.1574468325115]
We investigate the consequences of introducing non-uniform initial conditions in the dynamics of spin ensembles characterized by all-to-all interactions.
We find that the dynamics of the spin ensemble now spans a more expansive effective Hilbert space.
arXiv Detail & Related papers (2023-09-19T16:44:14Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Localization control born of intertwined quasiperiodicity and
non-Hermiticity [0.0]
We show for the first time that the intertwined quasiperiodicity and non-Hermiticity can give rise to striking effects.
In particular, we explore the wave function localization character in the Aubry-Andre-Fibonacci (AAF) model.
arXiv Detail & Related papers (2022-11-25T19:00:05Z) - Non-Hermitian skin effect and self-acceleration [0.0]
Non-Hermitian systems exhibit nontrivial band topology and a strong sensitivity of the energy spectrum on the boundary conditions.
A macroscopic number of bulk states get squeezed toward the lattice edges under open boundary conditions, an effect dubbed the non-Hermitian skin effect (NHSE)
Here we unravel a different dynamical signature of the NHSE in real space that manifests itself in the em early-time dynamics of the system, namely self-acceleration of the wave function.
arXiv Detail & Related papers (2022-06-22T04:29:08Z) - Non-Hermitian pseudo mobility edge in a coupled chain system [0.0]
We show that in the ladder with weak rung coupling, the nonHermitian skin localization could induce a pseudo mobility edge.
We also demonstrate the gradual takeover of the non-Hermitian skin effect in the entire system.
arXiv Detail & Related papers (2021-11-23T14:55:37Z) - Single-Particle Mobility Edge without Disorder [0.0]
We analytically show that, even though the model has no quenched disorder, this system manifests an exact mobility edge.
For strong fields, the Wannier-Stark ladder is recovered and the number of localized eigenstates is inversely proportional to the spacing.
arXiv Detail & Related papers (2021-09-23T10:33:29Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Long-lived period-doubled edge modes of interacting and disorder-free
Floquet spin chains [68.8204255655161]
We show that even in the absence of disorder, and in the presence of bulk heating, $pi$ edge modes are long lived.
A tunneling estimate for the lifetime is obtained by mapping the stroboscopic time-evolution to dynamics of a single particle in Krylov subspace.
arXiv Detail & Related papers (2021-05-28T12:13:14Z) - Observing localisation in a 2D quasicrystalline optical lattice [52.77024349608834]
We experimentally and numerically study the ground state of non- and weakly-interacting bosons in an eightfold symmetric optical lattice.
We find extended states for weak lattices but observe a localisation transition at a lattice depth of $V_0.78(2),E_mathrmrec$ for the non-interacting system.
arXiv Detail & Related papers (2020-01-29T15:54:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.