Can Language Models Rival Mathematics Students? Evaluating Mathematical Reasoning through Textual Manipulation and Human Experiments
- URL: http://arxiv.org/abs/2412.11908v1
- Date: Mon, 16 Dec 2024 15:54:06 GMT
- Title: Can Language Models Rival Mathematics Students? Evaluating Mathematical Reasoning through Textual Manipulation and Human Experiments
- Authors: Andrii Nikolaiev, Yiannos Stathopoulos, Simone Teufel,
- Abstract summary: We compare models LLaMA-2, LLaMA-3.1, GPT-4, and Mixtral against each other and against human pupils and undergraduates with prior experience in mathematical olympiads.
We found that a model based on GPT-4 outperformed all other models in producing correct responses, and performed significantly better in the mathematical variation of the problems than humans.
- Score: 2.0332066203780452
- License:
- Abstract: In this paper we look at the ability of recent large language models (LLMs) at solving mathematical problems in combinatorics. We compare models LLaMA-2, LLaMA-3.1, GPT-4, and Mixtral against each other and against human pupils and undergraduates with prior experience in mathematical olympiads. To facilitate these comparisons we introduce the Combi-Puzzles dataset, which contains 125 problem variants based on 25 combinatorial reasoning problems. Each problem is presented in one of five distinct forms, created by systematically manipulating the problem statements through adversarial additions, numeric parameter changes, and linguistic obfuscation. Our variations preserve the mathematical core and are designed to measure the generalisability of LLM problem-solving abilities, while also increasing confidence that problems are submitted to LLMs in forms that have not been seen as training instances. We found that a model based on GPT-4 outperformed all other models in producing correct responses, and performed significantly better in the mathematical variation of the problems than humans. We also found that modifications to problem statements significantly impact the LLM's performance, while human performance remains unaffected.
Related papers
- Large Language Models and Mathematical Reasoning Failures [1.6114012813668932]
This paper investigates the mathematical reasoning capabilities of large language models (LLMs) using 50 newly constructed high-school-level word problems.
We rigorously analyze both final answers and solution steps to identify reasoning failures.
We find that while newer models (e.g., o3-mini, deepseek-r1) achieve higher accuracy, all models exhibit errors in spatial reasoning, strategic planning, and arithmetic.
arXiv Detail & Related papers (2025-02-17T09:07:32Z) - MATH-Perturb: Benchmarking LLMs' Math Reasoning Abilities against Hard Perturbations [90.07275414500154]
We observe significant performance drops on MATH-P-Hard across various models.
We also raise concerns about a novel form of memorization where models blindly apply learned problem-solving skills.
arXiv Detail & Related papers (2025-02-10T13:31:46Z) - Error Classification of Large Language Models on Math Word Problems: A Dynamically Adaptive Framework [64.83955753606443]
Math Word Problems serve as a crucial benchmark for evaluating Large Language Models' reasoning abilities.
Current error classification methods rely on static and predefined categories.
We introduce MWPES-300K, a comprehensive dataset containing 304,865 error samples.
arXiv Detail & Related papers (2025-01-26T16:17:57Z) - ErrorRadar: Benchmarking Complex Mathematical Reasoning of Multimodal Large Language Models Via Error Detection [60.297079601066784]
We introduce ErrorRadar, the first benchmark designed to assess MLLMs' capabilities in error detection.
ErrorRadar evaluates two sub-tasks: error step identification and error categorization.
It consists of 2,500 high-quality multimodal K-12 mathematical problems, collected from real-world student interactions.
Results indicate significant challenges still remain, as GPT-4o with best performance is still around 10% behind human evaluation.
arXiv Detail & Related papers (2024-10-06T14:59:09Z) - Exposing the Achilles' Heel: Evaluating LLMs Ability to Handle Mistakes in Mathematical Reasoning [11.63133816413199]
Large Language Models (LLMs) have been applied to Math Word Problems (MWPs)
We introduce a novel dataset MWP-MISTAKE, incorporating MWPs with both correct and incorrect reasoning steps generated through rule-based methods and smaller language models.
We highlight GPT-$o's superior performance in mistake detection and rectification and the persistent challenges faced by smaller models.
arXiv Detail & Related papers (2024-06-16T08:06:05Z) - GSM-Plus: A Comprehensive Benchmark for Evaluating the Robustness of LLMs as Mathematical Problem Solvers [68.77382332826167]
Large language models (LLMs) have achieved impressive performance across various mathematical reasoning benchmarks.
One essential and frequently occurring evidence is that when the math questions are slightly changed, LLMs can behave incorrectly.
This motivates us to evaluate the robustness of LLMs' math reasoning capability by testing a wide range of question variations.
arXiv Detail & Related papers (2024-02-29T15:26:14Z) - Do Language Models Exhibit the Same Cognitive Biases in Problem Solving as Human Learners? [140.9751389452011]
We study the biases of large language models (LLMs) in relation to those known in children when solving arithmetic word problems.
We generate a novel set of word problems for each of these tests, using a neuro-symbolic approach that enables fine-grained control over the problem features.
arXiv Detail & Related papers (2024-01-31T18:48:20Z) - Evaluating Language Models for Mathematics through Interactions [116.67206980096513]
We introduce CheckMate, a prototype platform for humans to interact with and evaluate large language models (LLMs)
We conduct a study with CheckMate to evaluate three language models (InstructGPT, ChatGPT, and GPT-4) as assistants in proving undergraduate-level mathematics.
We derive a taxonomy of human behaviours and uncover that despite a generally positive correlation, there are notable instances of divergence between correctness and perceived helpfulness.
arXiv Detail & Related papers (2023-06-02T17:12:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.