Physics Meets Pixels: PDE Models in Image Processing
- URL: http://arxiv.org/abs/2412.11946v1
- Date: Wed, 11 Dec 2024 23:11:50 GMT
- Title: Physics Meets Pixels: PDE Models in Image Processing
- Authors: Alejandro Garnung Menéndez,
- Abstract summary: Partial Differential Equations (PDEs) have long been recognized as powerful tools for image processing and analysis.
We introduce novel physical-based PDE models specifically designed for various image processing tasks.
- Score: 55.2480439325792
- License:
- Abstract: Partial Differential Equations (PDEs) have long been recognized as powerful tools for image processing and analysis, providing a framework to model and exploit structural and geometric properties inherent in visual data. Over the years, numerous PDE-based models have been developed and refined, inspired by natural analogies between physical phenomena and image spaces. These methods have proven highly effective in a wide range of applications, including denoising, deblurring, sharpening, inpainting, feature extraction, and others. This work provides a theoretical and computational exploration of both fundamental and innovative PDE models applied to image processing, accompanied by extensive numerical experimentation and objective and subjective analysis. Building upon well-established techniques, we introduce novel physical-based PDE models specifically designed for various image processing tasks. These models incorporate mathematical principles and approaches that, to the best of our knowledge, have not been previously applied in this domain, showcasing their potential to address challenges beyond the capabilities of traditional and existing PDE methods. By formulating and solving these mathematical models, we demonstrate their effectiveness in advancing image processing tasks while retaining a rigorous connection to their theoretical underpinnings. This work seeks to bridge foundational concepts and cutting-edge innovations, contributing to the evolution of PDE methodologies in digital image processing and related interdisciplinary fields.
Related papers
- Novel computational workflows for natural and biomedical image processing based on hypercomplex algebras [49.81327385913137]
Hypercomplex image processing extends conventional techniques in a unified paradigm encompassing algebraic and geometric principles.
This workleverages quaternions and the two-dimensional planes split framework (splitting of a quaternion - representing a pixel - into pairs of 2D planes) for natural/biomedical image analysis.
The proposed can regulate color appearance (e.g. with alternative renditions and grayscale conversion) and image contrast, be part of automated image processing pipelines.
arXiv Detail & Related papers (2025-02-11T18:38:02Z) - Advancing Generalization in PINNs through Latent-Space Representations [71.86401914779019]
Physics-informed neural networks (PINNs) have made significant strides in modeling dynamical systems governed by partial differential equations (PDEs)
We propose PIDO, a novel physics-informed neural PDE solver designed to generalize effectively across diverse PDE configurations.
We validate PIDO on a range of benchmarks, including 1D combined equations and 2D Navier-Stokes equations.
arXiv Detail & Related papers (2024-11-28T13:16:20Z) - Towards a Foundation Model for Partial Differential Equations: Multi-Operator Learning and Extrapolation [4.286691905364396]
We introduce a multi-modal foundation model for scientific problems, named PROSE-PDE.
Our model is a multi-operator learning approach which can predict future states of systems while concurrently learning the underlying governing equations of the physical system.
arXiv Detail & Related papers (2024-04-18T17:34:20Z) - Scalable Scene Modeling from Perspective Imaging: Physics-based Appearance and Geometry Inference [3.2229099973277076]
dissertation presents a fraction of contributions that advances 3D scene modeling to its state of the art.
In contrast to the prevailing deep learning methods, as a core contribution, this thesis aims to develop algorithms that follow first principles.
arXiv Detail & Related papers (2024-04-01T17:09:40Z) - Finite Element Operator Network for Solving Elliptic-type parametric PDEs [9.658853094888125]
Partial differential equations (PDEs) underlie our understanding and prediction of natural phenomena.
We propose a novel approach for solving parametric PDEs using a Finite Element Operator Network (FEONet)
arXiv Detail & Related papers (2023-08-09T03:56:07Z) - Partial Differential Equations Meet Deep Neural Networks: A Survey [10.817323756266527]
Problems in science and engineering can be represented by a set of partial differential equations (PDEs) through mathematical modeling.
Mechanism-based computation following PDEs has long been an essential paradigm for studying topics such as computational fluid dynamics.
Deep Neural Networks (DNNs) for PDEs have emerged as an effective means of solving PDEs.
arXiv Detail & Related papers (2022-10-27T07:01:56Z) - Multi-scale Physical Representations for Approximating PDE Solutions
with Graph Neural Operators [14.466945570499183]
We study three multi-resolution schema with integral kernel operators approximated with emphMessage Passing Graph Neural Networks (MPGNNs)
To validate our study, we make extensive MPGNNs experiments with well-chosen metrics considering steady and unsteady PDEs.
arXiv Detail & Related papers (2022-06-29T14:42:03Z) - Neural Implicit Representations for Physical Parameter Inference from a Single Video [49.766574469284485]
We propose to combine neural implicit representations for appearance modeling with neural ordinary differential equations (ODEs) for modelling physical phenomena.
Our proposed model combines several unique advantages: (i) Contrary to existing approaches that require large training datasets, we are able to identify physical parameters from only a single video.
The use of neural implicit representations enables the processing of high-resolution videos and the synthesis of photo-realistic images.
arXiv Detail & Related papers (2022-04-29T11:55:35Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - A Survey of Orthogonal Moments for Image Representation: Theory,
Implementation, and Evaluation [70.0671278823937]
Moment-based image representation has been reported to be effective in satisfying the core conditions of semantic description.
This paper presents a comprehensive survey of the orthogonal moments for image representation, covering recent advances in fast/accurate calculation, robustness/invariance optimization, and definition extension.
The presented theory analysis, software implementation, and evaluation results can support the community, particularly in developing novel techniques and promoting real-world applications.
arXiv Detail & Related papers (2021-03-27T03:41:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.