Scalable Scene Modeling from Perspective Imaging: Physics-based Appearance and Geometry Inference
- URL: http://arxiv.org/abs/2404.01248v1
- Date: Mon, 1 Apr 2024 17:09:40 GMT
- Title: Scalable Scene Modeling from Perspective Imaging: Physics-based Appearance and Geometry Inference
- Authors: Shuang Song,
- Abstract summary: dissertation presents a fraction of contributions that advances 3D scene modeling to its state of the art.
In contrast to the prevailing deep learning methods, as a core contribution, this thesis aims to develop algorithms that follow first principles.
- Score: 3.2229099973277076
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D scene modeling techniques serve as the bedrocks in the geospatial engineering and computer science, which drives many applications ranging from automated driving, terrain mapping, navigation, virtual, augmented, mixed, and extended reality (for gaming and movie industry etc.). This dissertation presents a fraction of contributions that advances 3D scene modeling to its state of the art, in the aspects of both appearance and geometry modeling. In contrast to the prevailing deep learning methods, as a core contribution, this thesis aims to develop algorithms that follow first principles, where sophisticated physic-based models are introduced alongside with simpler learning and inference tasks. The outcomes of these algorithms yield processes that can consume much larger volume of data for highly accurate reconstructing 3D scenes at a scale without losing methodological generality, which are not possible by contemporary complex-model based deep learning methods. Specifically, the dissertation introduces three novel methodologies that address the challenges of inferring appearance and geometry through physics-based modeling. Overall, the research encapsulated in this dissertation marks a series of methodological triumphs in the processing of complex datasets. By navigating the confluence of deep learning, computational geometry, and photogrammetry, this work lays down a robust framework for future exploration and practical application in the rapidly evolving field of 3D scene reconstruction. The outcomes of these studies are evidenced through rigorous experiments and comparisons with existing state-of-the-art methods, demonstrating the efficacy and scalability of the proposed approaches.
Related papers
- Geometry Distributions [51.4061133324376]
We propose a novel geometric data representation that models geometry as distributions.
Our approach uses diffusion models with a novel network architecture to learn surface point distributions.
We evaluate our representation qualitatively and quantitatively across various object types, demonstrating its effectiveness in achieving high geometric fidelity.
arXiv Detail & Related papers (2024-11-25T04:06:48Z) - DreamPolish: Domain Score Distillation With Progressive Geometry Generation [66.94803919328815]
We introduce DreamPolish, a text-to-3D generation model that excels in producing refined geometry and high-quality textures.
In the geometry construction phase, our approach leverages multiple neural representations to enhance the stability of the synthesis process.
In the texture generation phase, we introduce a novel score distillation objective, namely domain score distillation (DSD), to guide neural representations toward such a domain.
arXiv Detail & Related papers (2024-11-03T15:15:01Z) - Learning-based Multi-View Stereo: A Survey [55.3096230732874]
Multi-View Stereo (MVS) algorithms synthesize a comprehensive 3D representation, enabling precise reconstruction in complex environments.
With the success of deep learning, many learning-based MVS methods have been proposed, achieving impressive performance against traditional methods.
arXiv Detail & Related papers (2024-08-27T17:53:18Z) - Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
We propose a generative Bayesian network to produce diverse synthetic scenes with real-world patterns.
A series of experiments robustly display our method's consistent superiority over existing state-of-the-art pre-training approaches.
arXiv Detail & Related papers (2024-06-17T07:43:53Z) - Gaussian Splatting: 3D Reconstruction and Novel View Synthesis, a Review [0.08823202672546056]
This review paper focuses on state-of-the-art techniques for 3D reconstruction, including the generation of novel, unseen views.
An overview of recent developments in the Gaussian Splatting method is provided, covering input types, model structures, output representations, and training strategies.
arXiv Detail & Related papers (2024-05-06T12:32:38Z) - PGAHum: Prior-Guided Geometry and Appearance Learning for High-Fidelity Animatable Human Reconstruction [9.231326291897817]
We introduce PGAHum, a prior-guided geometry and appearance learning framework for high-fidelity animatable human reconstruction.
We thoroughly exploit 3D human priors in three key modules of PGAHum to achieve high-quality geometry reconstruction with intricate details and photorealistic view synthesis on unseen poses.
arXiv Detail & Related papers (2024-04-22T04:22:30Z) - Embedded Shape Matching in Photogrammetry Data for Modeling Making
Knowledge [0.0]
We use two-dimensional samples obtained by projection to overcome the difficulties of pattern recognition in three-dimensional models.
The application is based on photogrammetric capture of a few examples of Zeugma mosaics and three-dimensional digital modeling of a set of Seljuk era brick walls.
arXiv Detail & Related papers (2023-12-20T23:52:53Z) - Human as Points: Explicit Point-based 3D Human Reconstruction from
Single-view RGB Images [78.56114271538061]
We introduce an explicit point-based human reconstruction framework called HaP.
Our approach is featured by fully-explicit point cloud estimation, manipulation, generation, and refinement in the 3D geometric space.
Our results may indicate a paradigm rollback to the fully-explicit and geometry-centric algorithm design.
arXiv Detail & Related papers (2023-11-06T05:52:29Z) - 3D objects and scenes classification, recognition, segmentation, and
reconstruction using 3D point cloud data: A review [5.85206759397617]
Three-dimensional (3D) point cloud analysis has become one of the attractive subjects in realistic imaging and machine visions.
A significant effort has recently been devoted to developing novel strategies, using different techniques such as deep learning models.
Various tasks performed on 3D point could data are investigated, including objects and scenes detection, recognition, segmentation and reconstruction.
arXiv Detail & Related papers (2023-06-09T15:45:23Z) - Geometric Processing for Image-based 3D Object Modeling [2.6397379133308214]
This article focuses on introducing the state-of-the-art methods of three major components of geometric processing: 1) geo-referencing; 2) Image dense matching 3) texture mapping.
The largely automated geometric processing of images in a 3D object reconstruction workflow, is becoming a critical part of the reality-based 3D modeling.
arXiv Detail & Related papers (2021-06-27T18:33:30Z) - Pix2Surf: Learning Parametric 3D Surface Models of Objects from Images [64.53227129573293]
We investigate the problem of learning to generate 3D parametric surface representations for novel object instances, as seen from one or more views.
We design neural networks capable of generating high-quality parametric 3D surfaces which are consistent between views.
Our method is supervised and trained on a public dataset of shapes from common object categories.
arXiv Detail & Related papers (2020-08-18T06:33:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.