Coconut Palm Tree Counting on Drone Images with Deep Object Detection and Synthetic Training Data
- URL: http://arxiv.org/abs/2412.11949v1
- Date: Mon, 16 Dec 2024 16:33:28 GMT
- Title: Coconut Palm Tree Counting on Drone Images with Deep Object Detection and Synthetic Training Data
- Authors: Tobias Rohe, Barbara Böhm, Michael Kölle, Jonas Stein, Robert Müller, Claudia Linnhoff-Popien,
- Abstract summary: This study utilized YOLO, a real-time object detector, to identify and count coconut palm trees in Ghanaian farm drone footage.
To optimize YOLO with scarce data, synthetic images were created for model training and validation.
- Score: 5.492715335713603
- License:
- Abstract: Drones have revolutionized various domains, including agriculture. Recent advances in deep learning have propelled among other things object detection in computer vision. This study utilized YOLO, a real-time object detector, to identify and count coconut palm trees in Ghanaian farm drone footage. The farm presented has lost track of its trees due to different planting phases. While manual counting would be very tedious and error-prone, accurately determining the number of trees is crucial for efficient planning and management of agricultural processes, especially for optimizing yields and predicting production. We assessed YOLO for palm detection within a semi-automated framework, evaluated accuracy augmentations, and pondered its potential for farmers. Data was captured in September 2022 via drones. To optimize YOLO with scarce data, synthetic images were created for model training and validation. The YOLOv7 model, pretrained on the COCO dataset (excluding coconut palms), was adapted using tailored data. Trees from footage were repositioned on synthetic images, with testing on distinct authentic images. In our experiments, we adjusted hyperparameters, improving YOLO's mean average precision (mAP). We also tested various altitudes to determine the best drone height. From an initial mAP@.5 of $0.65$, we achieved 0.88, highlighting the value of synthetic images in agricultural scenarios.
Related papers
- Plantation Monitoring Using Drone Images: A Dataset and Performance Review [2.4936576553283287]
Small, low cost drones equipped with an RGB camera can capture high-resolution images of agricultural fields.
Existing methods of automated plantation monitoring are mostly based on satellite images.
We propose an automated system for plantation health monitoring using drone images.
arXiv Detail & Related papers (2025-02-12T09:21:16Z) - Accurate Crop Yield Estimation of Blueberries using Deep Learning and Smart Drones [5.586392657005597]
We present an AI pipeline that involves using smart drones equipped with computer vision to obtain a more accurate fruit count and yield estimation.
The core components are two object-detection models based on the YOLO deep learning architecture.
We describe how to deploy our models to map out blueberry fields using different sampling strategies.
arXiv Detail & Related papers (2025-01-04T17:45:29Z) - Identifying Cocoa Pollinators: A Deep Learning Dataset [6.729487636003146]
Cocoa is a multi-billion-dollar industry but research on improving yields through pollination remains limited.
New embedded hardware and AI-based data analysis is advancing information on cocoa flower visitors, their identity and implications for yields.
We present the first cocoa flower visitor dataset containing 5,792 images of Ceratopogonidae, Formicidae, Aphididae, Araneae, and Encyrtidae.
arXiv Detail & Related papers (2024-12-27T20:27:52Z) - HarvestNet: A Dataset for Detecting Smallholder Farming Activity Using
Harvest Piles and Remote Sensing [50.4506590177605]
HarvestNet is a dataset for mapping the presence of farms in the Ethiopian regions of Tigray and Amhara during 2020-2023.
We introduce a new approach based on the detection of harvest piles characteristic of many smallholder systems.
We conclude that remote sensing of harvest piles can contribute to more timely and accurate cropland assessments in food insecure regions.
arXiv Detail & Related papers (2023-08-23T11:03:28Z) - Exploring the Effectiveness of Dataset Synthesis: An application of
Apple Detection in Orchards [68.95806641664713]
We explore the usability of Stable Diffusion 2.1-base for generating synthetic datasets of apple trees for object detection.
We train a YOLOv5m object detection model to predict apples in a real-world apple detection dataset.
Results demonstrate that the model trained on generated data is slightly underperforming compared to a baseline model trained on real-world images.
arXiv Detail & Related papers (2023-06-20T09:46:01Z) - Transferring learned patterns from ground-based field imagery to predict
UAV-based imagery for crop and weed semantic segmentation in precision crop
farming [3.95486899327898]
We have developed a deep convolutional network that enables to predict both field and aerial images from UAVs for weed segmentation.
The network learning process is visualized by feature maps at shallow and deep layers.
The study shows that the developed deep convolutional neural network could be used to classify weeds from both field and aerial images.
arXiv Detail & Related papers (2022-10-20T19:25:06Z) - Comparing Machine Learning Techniques for Alfalfa Biomass Yield
Prediction [0.8808021343665321]
alfalfa crop is globally important as livestock feed, so highly efficient planting and harvesting could benefit many industries.
Recent work using machine learning to predict yields for alfalfa and other crops has shown promise.
Previous efforts used remote sensing, weather, planting, and soil data to train machine learning models for yield prediction.
arXiv Detail & Related papers (2022-10-20T13:00:33Z) - End-to-end deep learning for directly estimating grape yield from
ground-based imagery [53.086864957064876]
This study demonstrates the application of proximal imaging combined with deep learning for yield estimation in vineyards.
Three model architectures were tested: object detection, CNN regression, and transformer models.
The study showed the applicability of proximal imaging and deep learning for prediction of grapevine yield on a large scale.
arXiv Detail & Related papers (2022-08-04T01:34:46Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
The paper presents an approach for analyzing aerial images of a potato crop using deep neural networks.
The main objective is to demonstrate automated spatial recognition of a healthy versus stressed crop at a plant level.
Experimental validation demonstrated the ability for distinguishing healthy and stressed plants in field images, achieving an average Dice coefficient of 0.74.
arXiv Detail & Related papers (2021-06-14T21:57:40Z) - A CNN Approach to Simultaneously Count Plants and Detect Plantation-Rows
from UAV Imagery [56.10033255997329]
We propose a novel deep learning method based on a Convolutional Neural Network (CNN)
It simultaneously detects and geolocates plantation-rows while counting its plants considering highly-dense plantation configurations.
The proposed method achieved state-of-the-art performance for counting and geolocating plants and plant-rows in UAV images from different types of crops.
arXiv Detail & Related papers (2020-12-31T18:51:17Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
We take advantage of all parallel developments in mechanistic modeling and satellite data availability for advanced monitoring of crop productivity.
Our model successfully estimates gross primary productivity across a variety of C3 crop types and environmental conditions even though it does not use any local information from the corresponding sites.
This highlights its potential to map crop productivity from new satellite sensors at a global scale with the help of current Earth observation cloud computing platforms.
arXiv Detail & Related papers (2020-12-07T16:23:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.