論文の概要: LLM-RG4: Flexible and Factual Radiology Report Generation across Diverse Input Contexts
- arxiv url: http://arxiv.org/abs/2412.12001v1
- Date: Mon, 16 Dec 2024 17:29:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 14:01:29.313215
- Title: LLM-RG4: Flexible and Factual Radiology Report Generation across Diverse Input Contexts
- Title(参考訳): LLM-RG4: 多様な入力コンテキストにまたがるフレキシブル・ファクチュアルラジオロジーレポートの作成
- Authors: Zhuhao Wang, Yihua Sun, Zihan Li, Xuan Yang, Fang Chen, Hongen Liao,
- Abstract要約: 現在の放射線学レポート生成モデルは、固定的なタスクパラダイムに制約されている。
本稿ではLLM-RG4という新しい大規模言語モデル(LLM)に基づくRRGフレームワークを提案する。
我々のモデルは入力非依存の幻覚を最小限に抑えているのに対し、現在のオープンソースモデルは一般的にこの問題に悩まされている。
- 参考スコア(独自算出の注目度): 14.72366043711941
- License:
- Abstract: Drafting radiology reports is a complex task requiring flexibility, where radiologists tail content to available information and particular clinical demands. However, most current radiology report generation (RRG) models are constrained to a fixed task paradigm, such as predicting the full ``finding'' section from a single image, inherently involving a mismatch between inputs and outputs. The trained models lack the flexibility for diverse inputs and could generate harmful, input-agnostic hallucinations. To bridge the gap between current RRG models and the clinical demands in practice, we first develop a data generation pipeline to create a new MIMIC-RG4 dataset, which considers four common radiology report drafting scenarios and has perfectly corresponded input and output. Secondly, we propose a novel large language model (LLM) based RRG framework, namely LLM-RG4, which utilizes LLM's flexible instruction-following capabilities and extensive general knowledge. We further develop an adaptive token fusion module that offers flexibility to handle diverse scenarios with different input combinations, while minimizing the additional computational burden associated with increased input volumes. Besides, we propose a token-level loss weighting strategy to direct the model's attention towards positive and uncertain descriptions. Experimental results demonstrate that LLM-RG4 achieves state-of-the-art performance in both clinical efficiency and natural language generation on the MIMIC-RG4 and MIMIC-CXR datasets. We quantitatively demonstrate that our model has minimal input-agnostic hallucinations, whereas current open-source models commonly suffer from this problem.
- Abstract(参考訳): ドラフト放射線学レポートは柔軟性を必要とする複雑なタスクであり、放射線学者は利用可能な情報や特定の臨床要求にコンテンツを合わせる。
しかしながら、現在のラジオロジーレポート生成(RRG)モデルは、単一の画像から 'finding' セクション全体を予測し、本質的に入力と出力のミスマッチを含むような、固定されたタスクパラダイムに制約されている。
訓練されたモデルは多様な入力に対する柔軟性に欠けており、有害で入力に依存しない幻覚を生じさせる可能性がある。
現在のRRGモデルと臨床要件のギャップを埋めるために、まずデータ生成パイプラインを開発し、新しいMIMIC-RG4データセットを作成する。
第2に,LLMのフレキシブルな命令追従機能と広範な一般知識を利用する新しい大規模言語モデル (LLM) のRRGフレームワーク LLM-RG4を提案する。
さらに,入力量の増加に伴う計算負担の増大を最小限に抑えつつ,異なる入力の組み合わせで様々なシナリオを処理できる適応型トークン融合モジュールを開発した。
さらに, トークンレベルの損失重み付け手法を提案し, モデルが肯定的かつ不確実な記述に注意を向ける。
LLM-RG4は,MIMIC-RG4データセットとMIMIC-CXRデータセットを用いて,臨床効率と自然言語生成の両面で最先端の性能を発揮することを示した。
我々のモデルは入力非依存の幻覚が最小であるのに対して、現在のオープンソースモデルは一般的にこの問題に悩まされていることを定量的に示す。
関連論文リスト
- Knowledge-Driven Feature Selection and Engineering for Genotype Data with Large Language Models [35.084222907099644]
FREEFORM, Free-flow Reasoning, Ensembling for Enhanced Feature Output and Robust Modeling。
https://github.com/PennShenLab/FREEFORM.com/FreeFORMはGitHubのオープンソースフレームワークとして利用可能だ。
論文 参考訳(メタデータ) (2024-10-02T17:53:08Z) - Language Models and Retrieval Augmented Generation for Automated Structured Data Extraction from Diagnostic Reports [2.932283627137903]
この研究は、2つのデータセットを利用していた:7,294の放射線診断報告は、BT-RADS(Brain tumor Reporting and Data System)スコアに注釈付けされ、2,154の病理診断報告は、isocitrate dehydrogenase(IDH)変異のステータスに注釈付けされた。
論文 参考訳(メタデータ) (2024-09-15T15:21:45Z) - KARGEN: Knowledge-enhanced Automated Radiology Report Generation Using Large Language Models [39.831976458410864]
本稿では,大規模言語モデルに基づく知識向上型自動放射線学レポートジェネレーションフレームワークであるKARGENについて述べる。
このフレームワークは、LLM内の胸部疾患関連知識を解き放つための知識グラフを統合し、生成された報告の臨床的有用性を高める。
提案手法はMIMIC-CXRとIU-Xrayのデータセットに対して有望な結果を示す。
論文 参考訳(メタデータ) (2024-09-09T06:57:22Z) - R2GenCSR: Retrieving Context Samples for Large Language Model based X-ray Medical Report Generation [7.4871243017824165]
本稿では,新しいコンテキスト誘導型効率的なX線医療報告生成フレームワークを提案する。
具体的には、線形複雑度を持つ視覚バックボーンとしてMambaを導入し、得られた性能は強力なTransformerモデルに匹敵する。
論文 参考訳(メタデータ) (2024-08-19T07:15:11Z) - DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph [70.79413606968814]
本稿では,適応推論グラフ展開(DARG)によるLCMの動的評価を導入し,複雑性と多様性を制御した現在のベンチマークを動的に拡張する。
具体的には、まず現在のベンチマークでデータポイントの推論グラフを抽出し、それから推論グラフを摂動させて新しいテストデータを生成する。
このような新しく生成されたテストサンプルは、元のベンチマークと同様の言語的多様性を維持しながら、複雑さのレベルが異なる可能性がある。
論文 参考訳(メタデータ) (2024-06-25T04:27:53Z) - An Iterative Optimizing Framework for Radiology Report Summarization with ChatGPT [80.33783969507458]
放射線医学報告の「印象」セクションは、放射線医と他の医師とのコミュニケーションにとって重要な基盤である。
近年の研究では、大規模医療用テキストデータを用いた印象自動生成の有望な成果が得られている。
これらのモデルは、しばしば大量の医療用テキストデータを必要とし、一般化性能が劣る。
論文 参考訳(メタデータ) (2023-04-17T17:13:42Z) - Cross-Modal Causal Intervention for Medical Report Generation [109.83549148448469]
医療報告生成(MRG)は、コンピュータ支援診断と治療指導に不可欠である。
視覚的および言語的バイアスによって引き起こされる画像テキストデータ内の素早い相関のため、病変領域を確実に記述した正確なレポートを生成することは困難である。
本稿では,視覚分解モジュール (VDM) と言語分解モジュール (LDM) からなるMRGのための新しい視覚言語因果干渉 (VLCI) フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-16T07:23:55Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
被験者の大規模なコホートを含むグループ研究は、脳機能組織に関する一般的な結論を引き出す上で重要である。
グループ研究のための新しい多視点独立成分分析モデルを提案し、各被験者のデータを共有独立音源と雑音の線形結合としてモデル化する。
まず、fMRIデータを用いて、被験者間の共通音源の同定における感度の向上を示す。
論文 参考訳(メタデータ) (2020-06-11T17:29:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。