論文の概要: RepFace: Refining Closed-Set Noise with Progressive Label Correction for Face Recognition
- arxiv url: http://arxiv.org/abs/2412.12031v1
- Date: Mon, 16 Dec 2024 17:57:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:56:36.965090
- Title: RepFace: Refining Closed-Set Noise with Progressive Label Correction for Face Recognition
- Title(参考訳): RepFace: 顔認識のためのプログレッシブラベル補正によるクローズドセットノイズの除去
- Authors: Jie Zhang, Xun Gong, Zhonglin Sun,
- Abstract要約: 顔認識性能はラベルノイズ、特にクローズドセットノイズに大きく影響を受ける。
早期のトレーニングを安定させる新しい枠組みを提案し,サンプルをクリーンであいまいでうるさいグループに分割する。
本手法は,メインストリームの顔データセット上での最先端の処理結果を実現する。
- 参考スコア(独自算出の注目度): 7.436952568257183
- License:
- Abstract: Face recognition has made remarkable strides, driven by the expanding scale of datasets, advancements in various backbone and discriminative losses. However, face recognition performance is heavily affected by the label noise, especially closed-set noise. While numerous studies have focused on handling label noise, addressing closed-set noise still poses challenges. This paper identifies this challenge as training isn't robust to noise at the early-stage training, and necessitating an appropriate learning strategy for samples with low confidence, which are often misclassified as closed-set noise in later training phases. To address these issues, we propose a new framework to stabilize the training at early stages and split the samples into clean, ambiguous and noisy groups which are devised with separate training strategies. Initially, we employ generated auxiliary closed-set noisy samples to enable the model to identify noisy data at the early stages of training. Subsequently, we introduce how samples are split into clean, ambiguous and noisy groups by their similarity to the positive and nearest negative centers. Then we perform label fusion for ambiguous samples by incorporating accumulated model predictions. Finally, we apply label smoothing within the closed set, adjusting the label to a point between the nearest negative class and the initially assigned label. Extensive experiments validate the effectiveness of our method on mainstream face datasets, achieving state-of-the-art results. The code will be released upon acceptance.
- Abstract(参考訳): 顔認識は、データセットの規模の拡大、さまざまなバックボーンの進歩、差別的な損失によって、目覚ましい進歩を遂げた。
しかし、顔認識性能はラベルノイズ、特にクローズドセットノイズに大きく影響を受ける。
多くの研究がラベルノイズの扱いに重点を置いているが、クローズドセットノイズへの対処は依然として課題となっている。
本報告では, 早期訓練ではノイズに強い訓練は行わないため, 信頼度が低いサンプルに対して適切な学習戦略が必要であり, 後続の訓練段階において, 閉集合ノイズと誤分類されることが多いため, この課題を指摘した。
これらの課題に対処するため、我々は、早期のトレーニングを安定させ、サンプルを、個別のトレーニング戦略で考案されたクリーンであいまいなグループに分割する新しいフレームワークを提案する。
まず, モデルが訓練の初期段階でノイズデータを識別できるようにするために, 生成した補助的閉集合雑音サンプルを用いる。
次に, サンプルを, 正, 最寄りの陰中心と類似性により, 清潔, 不明瞭, うるさいグループに分割する方法を紹介する。
そして、蓄積したモデル予測を組み込んで、あいまいなサンプルのラベル融合を行う。
最後に、閉集合内にラベルスムーシングを適用し、最寄りの負のクラスと初期割り当てられたラベルの間の点にラベルを調整する。
大規模な実験により,本手法が主流の顔データセットに与える影響を検証し,最先端の結果が得られた。
コードは受理時にリリースされます。
関連論文リスト
- Extracting Clean and Balanced Subset for Noisy Long-tailed Classification [66.47809135771698]
そこで我々は,分布マッチングの観点から,クラスプロトタイプを用いた新しい擬似ラベリング手法を開発した。
手動で特定の確率尺度を設定することで、ノイズと長い尾を持つデータの副作用を同時に減らすことができる。
本手法は, クリーンなラベル付きクラスバランスサブセットを抽出し, ラベルノイズ付きロングテール分類において, 効果的な性能向上を実現する。
論文 参考訳(メタデータ) (2024-04-10T07:34:37Z) - Combating Label Noise With A General Surrogate Model For Sample
Selection [84.61367781175984]
本稿では,視覚言語サロゲートモデルCLIPを用いて,雑音の多いサンプルを自動的にフィルタリングする手法を提案する。
提案手法の有効性を実世界および合成ノイズデータセットで検証した。
論文 参考訳(メタデータ) (2023-10-16T14:43:27Z) - Rethinking Noisy Label Learning in Real-world Annotation Scenarios from
the Noise-type Perspective [38.24239397999152]
本稿では,雑音ラベル学習のためのサンプル選択に基づく新しい手法であるProto-semiを提案する。
Proto-semiは、すべてのサンプルをウォームアップを通じて信頼性と信頼できないデータセットに分割する。
自信のあるデータセットを活用することで、プロトタイプベクターがクラス特性をキャプチャするために構築される。
実世界の注釈付きデータセットの実証評価は、ノイズラベルから学習する問題の処理において、プロトセミの頑健さを裏付けるものである。
論文 参考訳(メタデータ) (2023-07-28T10:57:38Z) - Soft Curriculum for Learning Conditional GANs with Noisy-Labeled and
Uncurated Unlabeled Data [70.25049762295193]
本稿では,トレーニング中にノイズラベル付きおよび未処理データを受け入れる条件付き画像生成フレームワークを提案する。
本稿では,ラベルのないデータに新たなラベルを割り当てながら,逆行訓練にインスタンスワイドを割り当てるソフトカリキュラム学習を提案する。
実験により,本手法は,定量および定性性能の両面において,既存の半教師付き・ラベル付きロバストな手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-07-17T08:31:59Z) - Learning with Noisy labels via Self-supervised Adversarial Noisy Masking [33.87292143223425]
対向雑音マスキングと呼ばれる新しいトレーニング手法を提案する。
入力データとラベルを同時に調整し、ノイズの多いサンプルが過度に収まらないようにする。
合成および実世界のノイズデータセットの両方でテストされる。
論文 参考訳(メタデータ) (2023-02-14T03:13:26Z) - Learning from Noisy Labels with Coarse-to-Fine Sample Credibility
Modeling [22.62790706276081]
ノイズの多いラベルでディープニューラルネットワーク(DNN)を訓練することは事実上難しい。
従来の取り組みでは、統合されたデノナイジングフローで部分データや完全なデータを扱う傾向があります。
本研究では,ノイズの多いデータを分割・分散的に処理するために,CREMAと呼ばれる粗大な頑健な学習手法を提案する。
論文 参考訳(メタデータ) (2022-08-23T02:06:38Z) - Neighborhood Collective Estimation for Noisy Label Identification and
Correction [92.20697827784426]
ノイズラベルを用いた学習(LNL)は,ノイズラベルに対するモデルオーバーフィットの効果を軽減し,モデル性能と一般化を改善するための戦略を設計することを目的としている。
近年の進歩は、個々のサンプルのラベル分布を予測し、ノイズ検証とノイズラベル補正を行い、容易に確認バイアスを生じさせる。
提案手法では, 候補サンプルの予測信頼性を, 特徴空間近傍と対比することにより再推定する。
論文 参考訳(メタデータ) (2022-08-05T14:47:22Z) - Centrality and Consistency: Two-Stage Clean Samples Identification for
Learning with Instance-Dependent Noisy Labels [87.48541631675889]
本稿では,2段階のクリーンサンプル識別手法を提案する。
まず,クリーンサンプルの早期同定にクラスレベルの特徴クラスタリング手法を用いる。
次に, 基底真理クラス境界に近い残余のクリーンサンプルについて, 一貫性に基づく新しい分類法を提案する。
論文 参考訳(メタデータ) (2022-07-29T04:54:57Z) - S3: Supervised Self-supervised Learning under Label Noise [53.02249460567745]
本稿では,ラベルノイズの存在下での分類の問題に対処する。
提案手法の核心は,サンプルのアノテートラベルと特徴空間内のその近傍のラベルの分布との整合性に依存するサンプル選択機構である。
提案手法は,CIFARCIFAR100とWebVisionやANIMAL-10Nなどの実環境ノイズデータセットの両方で,従来の手法をはるかに上回っている。
論文 参考訳(メタデータ) (2021-11-22T15:49:20Z) - EvidentialMix: Learning with Combined Open-set and Closed-set Noisy
Labels [30.268962418683955]
開集合ラベルと閉集合ラベルを組み合わせた雑音ラベル問題の新しい変種について検討する。
その結果,従来の最先端手法よりも優れた分類結果と特徴表現が得られた。
論文 参考訳(メタデータ) (2020-11-11T11:15:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。