Virtual Agent-Based Communication Skills Training to Facilitate Health Persuasion Among Peers
- URL: http://arxiv.org/abs/2412.12061v1
- Date: Mon, 16 Dec 2024 18:34:32 GMT
- Title: Virtual Agent-Based Communication Skills Training to Facilitate Health Persuasion Among Peers
- Authors: Farnaz Nouraei, Keith Rebello, Mina Fallah, Prasanth Murali, Haley Matuszak, Valerie Jap, Andrea Parker, Michael Paasche-Orlow, Timothy Bickmore,
- Abstract summary: We present an approach that uses virtual agents to coach community-based volunteers in health counseling techniques.
We use this approach in a virtual agent-based system to increase COVID-19 vaccination.
- Score: 1.8408516054528479
- License:
- Abstract: Many laypeople are motivated to improve the health behavior of their family or friends but do not know where to start, especially if the health behavior is potentially stigmatizing or controversial. We present an approach that uses virtual agents to coach community-based volunteers in health counseling techniques, such as motivational interviewing, and allows them to practice these skills in role-playing scenarios. We use this approach in a virtual agent-based system to increase COVID-19 vaccination by empowering users to influence their social network. In a between-subjects comparative design study, we test the effects of agent system interactivity and role-playing functionality on counseling outcomes, with participants evaluated by standardized patients and objective judges. We find that all versions are effective at producing peer counselors who score adequately on a standardized measure of counseling competence, and that participants were significantly more satisfied with interactive virtual agents compared to passive viewing of the training material. We discuss design implications for interpersonal skills training systems based on our findings.
Related papers
- Sentiment-guided Commonsense-aware Response Generation for Mental Health Counseling [28.17719749654601]
We propose EmpRes, a novel sentiment-guided mechanism incorporating commonsense awareness for generating responses.
By leveraging foundation models and harnessing commonsense knowledge, EmpRes aims to generate responses that effectively shape the client's sentiment towards positivity.
Our findings show that 91% of users find the system effective, 80% express satisfaction, and over 85.45% convey a willingness to continue using the interface and recommend it to others.
arXiv Detail & Related papers (2025-01-06T15:41:52Z) - Cactus: Towards Psychological Counseling Conversations using Cognitive Behavioral Theory [24.937025825501998]
We create a multi-turn dialogue dataset that emulates real-life interactions using the goal-oriented and structured approach of Cognitive Behavioral Therapy (CBT)
We benchmark against established psychological criteria used to evaluate real counseling sessions, ensuring alignment with expert evaluations.
Experimental results demonstrate that Camel, a model trained with Cactus, outperforms other models in counseling skills, highlighting its effectiveness and potential as a counseling agent.
arXiv Detail & Related papers (2024-07-03T13:41:31Z) - PsychoGAT: A Novel Psychological Measurement Paradigm through Interactive Fiction Games with LLM Agents [68.50571379012621]
Psychological measurement is essential for mental health, self-understanding, and personal development.
PsychoGAT (Psychological Game AgenTs) achieves statistically significant excellence in psychometric metrics such as reliability, convergent validity, and discriminant validity.
arXiv Detail & Related papers (2024-02-19T18:00:30Z) - K-ESConv: Knowledge Injection for Emotional Support Dialogue Systems via
Prompt Learning [83.19215082550163]
We propose K-ESConv, a novel prompt learning based knowledge injection method for emotional support dialogue system.
We evaluate our model on an emotional support dataset ESConv, where the model retrieves and incorporates knowledge from external professional emotional Q&A forum.
arXiv Detail & Related papers (2023-12-16T08:10:10Z) - Validating a virtual human and automated feedback system for training
doctor-patient communication skills [3.0354760313198796]
We present the development and validation of a scalable, easily accessible, digital tool known as the Standardized Online Patient for Health Interaction Education (SOPHIE)
We found that participants who underwent SOPHIE performed significantly better than the control in overall communication, aggregate scores, empowering the patient, and showing empathy.
One day, we hope that SOPHIE will help make communication training resources more accessible by providing a scalable option to supplement existing resources.
arXiv Detail & Related papers (2023-06-27T05:23:08Z) - Design, Development, and Evaluation of an Interactive Personalized
Social Robot to Monitor and Coach Post-Stroke Rehabilitation Exercises [68.37238218842089]
We develop an interactive social robot exercise coaching system for personalized rehabilitation.
This system integrates a neural network model with a rule-based model to automatically monitor and assess patients' rehabilitation exercises.
Our system can adapt to new participants and achieved 0.81 average performance to assess their exercises, which is comparable to the experts' agreement level.
arXiv Detail & Related papers (2023-05-12T17:37:04Z) - Development of a Trust-Aware User Simulator for Statistical Proactive
Dialog Modeling in Human-AI Teams [4.384546153204966]
The concept of a Human-AI team has gained increasing attention in recent years.
For effective collaboration between humans and AI teammates, proactivity is crucial for close coordination and effective communication.
We present the development of a corpus-based user simulator for training and testing proactive dialog policies.
arXiv Detail & Related papers (2023-04-24T08:42:51Z) - An Empathetic AI Coach for Self-Attachment Therapy [0.19999259391104385]
We present a new dataset and a computational strategy for a digital coach that aims to guide users in practicing the protocols of self-attachment therapy.
Our framework augments a rule-based conversational agent with a deep-learning classifier for identifying the underlying emotion in a user's text response.
We craft a set of human-like personas that users can choose to interact with.
arXiv Detail & Related papers (2022-09-17T12:01:35Z) - "GAN I hire you?" -- A System for Personalized Virtual Job Interview
Training [49.201250723083]
This study develops an interactive job interview training system with a Generative Adversarial Network (GAN)-based approach.
The overall study results indicate that the GAN-based generated behavioral feedback is helpful.
arXiv Detail & Related papers (2022-06-08T13:03:39Z) - Enabling AI and Robotic Coaches for Physical Rehabilitation Therapy:
Iterative Design and Evaluation with Therapists and Post-Stroke Survivors [66.07833535962762]
Artificial intelligence (AI) and robotic coaches promise the improved engagement of patients on rehabilitation exercises through social interaction.
Previous work explored the potential of automatically monitoring exercises for AI and robotic coaches, but deployment remains a challenge.
We present our efforts on eliciting the detailed design specifications on how AI and robotic coaches could interact with and guide patient's exercises.
arXiv Detail & Related papers (2021-06-15T22:06:39Z) - Incorporating Rivalry in Reinforcement Learning for a Competitive Game [65.2200847818153]
This study focuses on providing a novel learning mechanism based on a rivalry social impact.
Based on the concept of competitive rivalry, our analysis aims to investigate if we can change the assessment of these agents from a human perspective.
arXiv Detail & Related papers (2020-11-02T21:54:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.