An Empathetic AI Coach for Self-Attachment Therapy
- URL: http://arxiv.org/abs/2209.08316v2
- Date: Wed, 31 Jan 2024 15:49:34 GMT
- Title: An Empathetic AI Coach for Self-Attachment Therapy
- Authors: Lisa Alazraki, Ali Ghachem, Neophytos Polydorou, Foaad Khosmood and
Abbas Edalat
- Abstract summary: We present a new dataset and a computational strategy for a digital coach that aims to guide users in practicing the protocols of self-attachment therapy.
Our framework augments a rule-based conversational agent with a deep-learning classifier for identifying the underlying emotion in a user's text response.
We craft a set of human-like personas that users can choose to interact with.
- Score: 0.19999259391104385
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we present a new dataset and a computational strategy for a
digital coach that aims to guide users in practicing the protocols of
self-attachment therapy. Our framework augments a rule-based conversational
agent with a deep-learning classifier for identifying the underlying emotion in
a user's text response, as well as a deep-learning assisted retrieval method
for producing novel, fluent and empathetic utterances. We also craft a set of
human-like personas that users can choose to interact with. Our goal is to
achieve a high level of engagement during virtual therapy sessions. We evaluate
the effectiveness of our framework in a non-clinical trial with N=16
participants, all of whom have had at least four interactions with the agent
over the course of five days. We find that our platform is consistently rated
higher for empathy, user engagement and usefulness than the simple rule-based
framework. Finally, we provide guidelines to further improve the design and
performance of the application, in accordance with the feedback received.
Related papers
- Interactive Agents: Simulating Counselor-Client Psychological Counseling via Role-Playing LLM-to-LLM Interactions [12.455050661682051]
We propose a framework that employs two large language models (LLMs) via role-playing for simulating counselor-client interactions.
Our framework involves two LLMs, one acting as a client equipped with a specific and real-life user profile and the other playing the role of an experienced counselor.
arXiv Detail & Related papers (2024-08-28T13:29:59Z) - K-ESConv: Knowledge Injection for Emotional Support Dialogue Systems via
Prompt Learning [83.19215082550163]
We propose K-ESConv, a novel prompt learning based knowledge injection method for emotional support dialogue system.
We evaluate our model on an emotional support dataset ESConv, where the model retrieves and incorporates knowledge from external professional emotional Q&A forum.
arXiv Detail & Related papers (2023-12-16T08:10:10Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
We show how off-policy reinforcement learning can enable improved performance under assumptions that are similar but potentially even more practical than those of interactive imitation learning.
Our proposed method uses reinforcement learning with user intervention signals themselves as rewards.
This relaxes the assumption that intervening experts in interactive imitation learning should be near-optimal and enables the algorithm to learn behaviors that improve over the potential suboptimal human expert.
arXiv Detail & Related papers (2023-11-21T21:05:21Z) - Modeling Motivational Interviewing Strategies On An Online Peer-to-Peer
Counseling Platform [35.9642101732025]
This paper seeks to bridge the gap by mapping peer-counselor chat-messages to motivational interviewing techniques.
We study the impact of MI techniques on the conversation ratings to investigate the techniques that predict clients' satisfaction with their counseling sessions.
This work provides a deeper understanding of the use of motivational interviewing techniques on peer-to-peer counselor platforms.
arXiv Detail & Related papers (2022-11-09T20:25:33Z) - SupervisorBot: NLP-Annotated Real-Time Recommendations of Psychotherapy
Treatment Strategies with Deep Reinforcement Learning [13.173307471333619]
We propose a recommendation system that suggests treatment strategies to a therapist during the psychotherapy session in real-time.
Our system uses a turn-level rating mechanism that predicts the therapeutic outcome by computing a similarity score between the deep embedding of a scoring inventory, and the current sentence that the patient is speaking.
arXiv Detail & Related papers (2022-08-27T19:22:53Z) - Interacting with Non-Cooperative User: A New Paradigm for Proactive
Dialogue Policy [83.61404191470126]
We propose a new solution named I-Pro that can learn Proactive policy in the Interactive setting.
Specifically, we learn the trade-off via a learned goal weight, which consists of four factors.
The experimental results demonstrate I-Pro significantly outperforms baselines in terms of effectiveness and interpretability.
arXiv Detail & Related papers (2022-04-07T14:11:31Z) - Enabling AI and Robotic Coaches for Physical Rehabilitation Therapy:
Iterative Design and Evaluation with Therapists and Post-Stroke Survivors [66.07833535962762]
Artificial intelligence (AI) and robotic coaches promise the improved engagement of patients on rehabilitation exercises through social interaction.
Previous work explored the potential of automatically monitoring exercises for AI and robotic coaches, but deployment remains a challenge.
We present our efforts on eliciting the detailed design specifications on how AI and robotic coaches could interact with and guide patient's exercises.
arXiv Detail & Related papers (2021-06-15T22:06:39Z) - Automated Quality Assessment of Cognitive Behavioral Therapy Sessions
Through Highly Contextualized Language Representations [34.670548892766625]
A BERT-based model is proposed for automatic behavioral scoring of a specific type of psychotherapy, called Cognitive Behavioral Therapy (CBT)
The model is trained in a multi-task manner in order to achieve higher interpretability.
BERT-based representations are further augmented with available therapy metadata, providing relevant non-linguistic context and leading to consistent performance improvements.
arXiv Detail & Related papers (2021-02-23T09:22:29Z) - "Am I A Good Therapist?" Automated Evaluation Of Psychotherapy Skills
Using Speech And Language Technologies [38.726068038788384]
We describe our platform and its performance, using a dataset of more than 5,000 recordings.
Our system gives comprehensive feedback to the therapist, including information about the dynamics of the session.
We are confident that a widespread use of automated psychotherapy rating tools in the near future will augment experts' capabilities.
arXiv Detail & Related papers (2021-02-22T18:52:52Z) - MET: Multimodal Perception of Engagement for Telehealth [52.54282887530756]
We present MET, a learning-based algorithm for perceiving a human's level of engagement from videos.
We release a new dataset, MEDICA, for mental health patient engagement detection.
arXiv Detail & Related papers (2020-11-17T15:18:38Z) - Empowering Active Learning to Jointly Optimize System and User Demands [70.66168547821019]
We propose a new active learning approach that jointly optimize the active learning system (training efficiently) and the user (receiving useful instances)
We study our approach in an educational application, which particularly benefits from this technique as the system needs to rapidly learn to predict the appropriateness of an exercise to a particular user.
We evaluate multiple learning strategies and user types with data from real users and find that our joint approach better satisfies both objectives when alternative methods lead to many unsuitable exercises for end users.
arXiv Detail & Related papers (2020-05-09T16:02:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.