IDArb: Intrinsic Decomposition for Arbitrary Number of Input Views and Illuminations
- URL: http://arxiv.org/abs/2412.12083v1
- Date: Mon, 16 Dec 2024 18:52:56 GMT
- Title: IDArb: Intrinsic Decomposition for Arbitrary Number of Input Views and Illuminations
- Authors: Zhibing Li, Tong Wu, Jing Tan, Mengchen Zhang, Jiaqi Wang, Dahua Lin,
- Abstract summary: Capturing geometric and material information from images remains a fundamental challenge in computer vision and graphics.
Traditional optimization-based methods often require hours of computational time to reconstruct geometry, material properties, and environmental lighting from dense multi-view inputs.
We introduce IDArb, a diffusion-based model designed to perform intrinsic decomposition on an arbitrary number of images under varying illuminations.
- Score: 64.07859467542664
- License:
- Abstract: Capturing geometric and material information from images remains a fundamental challenge in computer vision and graphics. Traditional optimization-based methods often require hours of computational time to reconstruct geometry, material properties, and environmental lighting from dense multi-view inputs, while still struggling with inherent ambiguities between lighting and material. On the other hand, learning-based approaches leverage rich material priors from existing 3D object datasets but face challenges with maintaining multi-view consistency. In this paper, we introduce IDArb, a diffusion-based model designed to perform intrinsic decomposition on an arbitrary number of images under varying illuminations. Our method achieves accurate and multi-view consistent estimation on surface normals and material properties. This is made possible through a novel cross-view, cross-domain attention module and an illumination-augmented, view-adaptive training strategy. Additionally, we introduce ARB-Objaverse, a new dataset that provides large-scale multi-view intrinsic data and renderings under diverse lighting conditions, supporting robust training. Extensive experiments demonstrate that IDArb outperforms state-of-the-art methods both qualitatively and quantitatively. Moreover, our approach facilitates a range of downstream tasks, including single-image relighting, photometric stereo, and 3D reconstruction, highlighting its broad applications in realistic 3D content creation.
Related papers
- OpenMaterial: A Comprehensive Dataset of Complex Materials for 3D Reconstruction [54.706361479680055]
We introduce the OpenMaterial dataset, comprising 1001 objects made of 295 distinct materials.
OpenMaterial provides comprehensive annotations, including 3D shape, material type, camera pose, depth, and object mask.
It stands as the first large-scale dataset enabling quantitative evaluations of existing algorithms on objects with diverse and challenging materials.
arXiv Detail & Related papers (2024-06-13T07:46:17Z) - IntrinsicAnything: Learning Diffusion Priors for Inverse Rendering Under Unknown Illumination [37.96484120807323]
This paper aims to recover object materials from posed images captured under an unknown static lighting condition.
We learn the material prior with a generative model for regularizing the optimization process.
Experiments on real-world and synthetic datasets demonstrate that our approach achieves state-of-the-art performance on material recovery.
arXiv Detail & Related papers (2024-04-17T17:45:08Z) - DeLiRa: Self-Supervised Depth, Light, and Radiance Fields [32.350984950639656]
Differentiable volumetric rendering is a powerful paradigm for 3D reconstruction and novel view synthesis.
Standard volume rendering approaches struggle with degenerate geometries in the case of limited viewpoint diversity.
In this work, we propose to use the multi-view photometric objective as a geometric regularizer for volumetric rendering.
arXiv Detail & Related papers (2023-04-06T00:16:25Z) - MS-PS: A Multi-Scale Network for Photometric Stereo With a New
Comprehensive Training Dataset [0.0]
Photometric stereo (PS) problem consists in reconstructing the 3D-surface of an object.
We propose a multi-scale architecture for PS which, combined with a new dataset, yields state-of-the-art results.
arXiv Detail & Related papers (2022-11-25T14:01:54Z) - NeILF: Neural Incident Light Field for Physically-based Material
Estimation [31.230609753253713]
We present a differentiable rendering framework for material and lighting estimation from multi-view images and a reconstructed geometry.
In the framework, we represent scene lightings as the Neural Incident Light Field (NeILF) and material properties as the surface BRDF modelled by multi-layer perceptrons.
arXiv Detail & Related papers (2022-03-14T15:23:04Z) - Extracting Triangular 3D Models, Materials, and Lighting From Images [59.33666140713829]
We present an efficient method for joint optimization of materials and lighting from multi-view image observations.
We leverage meshes with spatially-varying materials and environment that can be deployed in any traditional graphics engine.
arXiv Detail & Related papers (2021-11-24T13:58:20Z) - DIB-R++: Learning to Predict Lighting and Material with a Hybrid
Differentiable Renderer [78.91753256634453]
We consider the challenging problem of predicting intrinsic object properties from a single image by exploiting differentiables.
In this work, we propose DIBR++, a hybrid differentiable which supports these effects by combining specularization and ray-tracing.
Compared to more advanced physics-based differentiables, DIBR++ is highly performant due to its compact and expressive model.
arXiv Detail & Related papers (2021-10-30T01:59:39Z) - Neural Radiance Fields Approach to Deep Multi-View Photometric Stereo [103.08512487830669]
We present a modern solution to the multi-view photometric stereo problem (MVPS)
We procure the surface orientation using a photometric stereo (PS) image formation model and blend it with a multi-view neural radiance field representation to recover the object's surface geometry.
Our method performs neural rendering of multi-view images while utilizing surface normals estimated by a deep photometric stereo network.
arXiv Detail & Related papers (2021-10-11T20:20:03Z) - Deep 3D Capture: Geometry and Reflectance from Sparse Multi-View Images [59.906948203578544]
We introduce a novel learning-based method to reconstruct the high-quality geometry and complex, spatially-varying BRDF of an arbitrary object.
We first estimate per-view depth maps using a deep multi-view stereo network.
These depth maps are used to coarsely align the different views.
We propose a novel multi-view reflectance estimation network architecture.
arXiv Detail & Related papers (2020-03-27T21:28:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.