MaterialMVP: Illumination-Invariant Material Generation via Multi-view PBR Diffusion
- URL: http://arxiv.org/abs/2503.10289v1
- Date: Thu, 13 Mar 2025 11:57:30 GMT
- Title: MaterialMVP: Illumination-Invariant Material Generation via Multi-view PBR Diffusion
- Authors: Zebin He, Mingxin Yang, Shuhui Yang, Yixuan Tang, Tao Wang, Kaihao Zhang, Guanying Chen, Yuhong Liu, Jie Jiang, Chunchao Guo, Wenhan Luo,
- Abstract summary: Physically-based rendering (PBR) has become a cornerstone in modern computer graphics, enabling realistic material representation and lighting interactions in 3D scenes.<n>We present a novel end-to-end model for generating PBR textures from 3D meshes and image prompts, addressing key challenges in multi-view material synthesis.
- Score: 37.596740171045845
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physically-based rendering (PBR) has become a cornerstone in modern computer graphics, enabling realistic material representation and lighting interactions in 3D scenes. In this paper, we present MaterialMVP, a novel end-to-end model for generating PBR textures from 3D meshes and image prompts, addressing key challenges in multi-view material synthesis. Our approach leverages Reference Attention to extract and encode informative latent from the input reference images, enabling intuitive and controllable texture generation. We also introduce a Consistency-Regularized Training strategy to enforce stability across varying viewpoints and illumination conditions, ensuring illumination-invariant and geometrically consistent results. Additionally, we propose Dual-Channel Material Generation, which separately optimizes albedo and metallic-roughness (MR) textures while maintaining precise spatial alignment with the input images through Multi-Channel Aligned Attention. Learnable material embeddings are further integrated to capture the distinct properties of albedo and MR. Experimental results demonstrate that our model generates PBR textures with realistic behavior across diverse lighting scenarios, outperforming existing methods in both consistency and quality for scalable 3D asset creation.
Related papers
- IntrinsiX: High-Quality PBR Generation using Image Priors [49.90007540430264]
We introduce IntrinsiX, a novel method that generates high-quality intrinsic images from text description.
In contrast to existing text-to-image models whose outputs contain baked-in scene lighting, our approach predicts physically-based rendering (PBR) maps.
arXiv Detail & Related papers (2025-04-01T17:47:48Z) - PBR3DGen: A VLM-guided Mesh Generation with High-quality PBR Texture [9.265778497001843]
We present PBR3DGen, a two-stage mesh generation method with high-quality PBR materials.
We leverage vision language models (VLM) to guide multi-view diffusion, precisely capturing the spatial distribution and inherent attributes of reflective-metalness material.
Our reconstruction model reconstructs high-quality mesh with PBR materials.
arXiv Detail & Related papers (2025-03-14T13:11:19Z) - Pandora3D: A Comprehensive Framework for High-Quality 3D Shape and Texture Generation [56.862552362223425]
This report presents a comprehensive framework for generating high-quality 3D shapes and textures from diverse input prompts.<n>The framework consists of 3D shape generation and texture generation.<n>This report details the system architecture, experimental results, and potential future directions to improve and expand the framework.
arXiv Detail & Related papers (2025-02-20T04:22:30Z) - MatCLIP: Light- and Shape-Insensitive Assignment of PBR Material Models [42.42328559042189]
MatCLIP is a novel method that extracts shape- and lighting-insensitive descriptors of PBR materials to assign plausible textures to 3D objects based on images.<n>By extending an Alpha-CLIP-based model on material renderings across diverse shapes and lighting, our approach generates descriptors that bridge the domains of PBR representations with photographs or renderings.<n>MatCLIP achieves a top-1 classification accuracy of 76.6%, outperforming state-of-the-art methods such as PhotoShape and MatAtlas.
arXiv Detail & Related papers (2025-01-27T12:08:52Z) - MCMat: Multiview-Consistent and Physically Accurate PBR Material Generation [30.69364954074992]
UNet-based diffusion models to generate multi-view physically rendering PBR maps but struggle with multi-view inconsistency, some 3D methods directly generate UV maps, issues due to the 3D data.<n>In the stage, we propose to generate PBR materials, where both the specially designed Transformer DiDi) model to generate PBR materials feature reference views.
arXiv Detail & Related papers (2024-12-18T18:45:35Z) - IDArb: Intrinsic Decomposition for Arbitrary Number of Input Views and Illuminations [64.07859467542664]
Capturing geometric and material information from images remains a fundamental challenge in computer vision and graphics.<n>Traditional optimization-based methods often require hours of computational time to reconstruct geometry, material properties, and environmental lighting from dense multi-view inputs.<n>We introduce IDArb, a diffusion-based model designed to perform intrinsic decomposition on an arbitrary number of images under varying illuminations.
arXiv Detail & Related papers (2024-12-16T18:52:56Z) - TexGaussian: Generating High-quality PBR Material via Octree-based 3D Gaussian Splatting [48.97819552366636]
This paper presents TexGaussian, a novel method that uses octant-aligned 3D Gaussian Splatting for rapid PBR material generation.<n>Our method synthesizes more visually pleasing PBR materials and runs faster than previous methods in both unconditional and text-conditional scenarios.
arXiv Detail & Related papers (2024-11-29T12:19:39Z) - Boosting 3D Object Generation through PBR Materials [32.732511476490316]
We propose a novel approach to boost the quality of generated 3D objects from the perspective of Physics-Based Rendering (PBR) materials.
For albedo and bump maps, we leverage Stable Diffusion fine-tuned on synthetic data to extract these values.
In terms of roughness and metalness maps, we adopt a semi-automatic process to provide room for interactive adjustment.
arXiv Detail & Related papers (2024-11-25T04:20:52Z) - DreamPBR: Text-driven Generation of High-resolution SVBRDF with Multi-modal Guidance [9.214785726215942]
We propose a novel diffusion-based generative framework designed to create spatially-varying appearance properties guided by text and multi-modal controls.
Key to achieving diverse and high-quality PBR material generation lies in integrating the capabilities of recent large-scale vision-language models trained on billions of text-image pairs.
We demonstrate the effectiveness of DreamPBR in material creation, showcasing its versatility and user-friendliness on a wide range of controllable generation and editing applications.
arXiv Detail & Related papers (2024-04-23T02:04:53Z) - Extracting Triangular 3D Models, Materials, and Lighting From Images [59.33666140713829]
We present an efficient method for joint optimization of materials and lighting from multi-view image observations.
We leverage meshes with spatially-varying materials and environment that can be deployed in any traditional graphics engine.
arXiv Detail & Related papers (2021-11-24T13:58:20Z) - DIB-R++: Learning to Predict Lighting and Material with a Hybrid
Differentiable Renderer [78.91753256634453]
We consider the challenging problem of predicting intrinsic object properties from a single image by exploiting differentiables.
In this work, we propose DIBR++, a hybrid differentiable which supports these effects by combining specularization and ray-tracing.
Compared to more advanced physics-based differentiables, DIBR++ is highly performant due to its compact and expressive model.
arXiv Detail & Related papers (2021-10-30T01:59:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.