論文の概要: SMARTCAL: An Approach to Self-Aware Tool-Use Evaluation and Calibration
- arxiv url: http://arxiv.org/abs/2412.12151v1
- Date: Wed, 11 Dec 2024 06:09:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-18 14:02:29.051917
- Title: SMARTCAL: An Approach to Self-Aware Tool-Use Evaluation and Calibration
- Title(参考訳): SMARTCAL: 自己認識ツールによる評価と校正へのアプローチ
- Authors: Yuanhao Shen, Xiaodan Zhu, Lei Chen,
- Abstract要約: 我々は,2つの主要なツール・ユース・フレームワークを持つ3つのデータセット上で,最先端のLarge Language Models (LLM) ファミリーの研究を行う。
本研究は,自信過剰にツールを誤用する傾向にあるLSMのツール使用行動を明らかにする。
我々は、観察された問題を緩和するための新しいアプローチ、textitCALを提案する。
- 参考スコア(独自算出の注目度): 24.739131794947838
- License:
- Abstract: The tool-use ability of Large Language Models (LLMs) has a profound impact on a wide range of industrial applications. However, LLMs' self-control and calibration capability in appropriately using tools remains understudied. The problem is consequential as it raises potential risks of degraded performance and poses a threat to the trustworthiness of the models. In this paper, we conduct a study on a family of state-of-the-art LLMs on three datasets with two mainstream tool-use frameworks. Our study reveals the tool-abuse behavior of LLMs, a tendency for models to misuse tools with overconfidence. We also find that this is a common issue regardless of model capability. Accordingly, we propose a novel approach, \textit{SMARTCAL}, to mitigate the observed issues, and our results show an average of 8.6 percent increase in the QA performance and a 21.6 percent decrease in Expected Calibration Error (ECE) compared to baseline models.
- Abstract(参考訳): LLM(Large Language Models)のツール使用能力は、幅広い産業アプリケーションに大きな影響を与えます。
しかし、LLMのツールを適切に使用するための自己制御と校正能力はまだ検討されていない。
問題は、劣化したパフォーマンスの潜在的なリスクを高め、モデルの信頼性を脅かすためである。
本稿では,2つの主要なツール・ユース・フレームワークを持つ3つのデータセット上で,最先端のLLMのファミリーについて検討する。
本研究は,自信過剰にツールを誤用する傾向にあるLSMのツール使用行動を明らかにする。
また、モデル能力に関係なく、これが一般的な問題であることもわかりました。
そこで,本研究では,観測された問題を緩和するための新しいアプローチである「textit{SMARTCAL}」を提案し,QA性能は平均8.6%向上し,予測校正誤差(ECE)はベースラインモデルと比較して21.6%低下した。
関連論文リスト
- Adaptive Tool Use in Large Language Models with Meta-Cognition Trigger [49.81945268343162]
我々は,外部ツール利用のための適応型意思決定戦略であるMeCoを提案する。
MeCoは表現空間の高レベル認知信号をキャプチャし、ツールを呼び出すタイミングを指示する。
実験の結果,MeCoはLSMの内部認知信号を正確に検出し,ツール使用による意思決定を大幅に改善することがわかった。
論文 参考訳(メタデータ) (2025-02-18T15:45:01Z) - SMART: Self-Aware Agent for Tool Overuse Mitigation [58.748554080273585]
現在のLarge Language Model (LLM) エージェントは、強力な推論とツールの使用能力を示すが、しばしば自己認識に欠ける。
この不均衡はツール・オーバーユースにつながり、モデルはパラメトリックな知識を持つタスクに対して、不要に外部ツールに依存する。
SMART(Strategic Model-Aware Reasoning with Tools)は、エージェントの自己認識を高め、タスクハンドリングを最適化し、ツールの過剰使用を減らすパラダイムである。
論文 参考訳(メタデータ) (2025-02-17T04:50:37Z) - Mind the Confidence Gap: Overconfidence, Calibration, and Distractor Effects in Large Language Models [0.6091702876917281]
本稿では,モデルサイズ,緩和要因,質問タイプが信頼性アライメントに与える影響について検討する。
本稿では,過信度を計測し,複数選択形式が誤校正を悪化させるかどうかを検討するための評価フレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-16T07:46:09Z) - Efficient Self-Improvement in Multimodal Large Language Models: A Model-Level Judge-Free Approach [31.654345704242512]
本稿では,新しいモデルレベルの判断自由自己改善フレームワークを提案する。
本手法では,検証ループにおけるMLLMの必要性を解消しつつ,制御されたフィードバック機構を用いる。
計算要求が大幅に小さく、精度とリコールの精度が向上する。
論文 参考訳(メタデータ) (2024-11-26T00:44:37Z) - CITI: Enhancing Tool Utilizing Ability in Large Language Models without Sacrificing General Performance [17.723293304671877]
コンポーネントベースツール活用能力注入法(CITI)を提案する。
異なるコンポーネントの勾配に基づく重要度スコアによると、CITIは微調整プロセスによって生じる能力衝突を軽減する。
実験結果から,本手法は様々な評価指標において優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2024-09-20T04:06:28Z) - Large Language Models Must Be Taught to Know What They Don't Know [97.90008709512921]
正解と誤解の小さなデータセットを微調整すると、高い一般化と計算オーバーヘッドの少ない不確実性推定が得られることを示す。
また,確実な不確実性推定を可能にする機構についても検討し,多くのモデルを汎用的不確実性推定器として利用することができることを示した。
論文 参考訳(メタデータ) (2024-06-12T16:41:31Z) - CERET: Cost-Effective Extrinsic Refinement for Text Generation [14.43795791836198]
本研究では,意味的安定性,包含性,サンプル間不確実性を考慮したテキスト生成手法であるCERETを提案する。
実験結果から, CERETは, 各種タスク設定下での自己整合性, 自己整合性, 自走性ベースラインを一貫して上回っていることがわかった。
論文 参考訳(メタデータ) (2024-06-08T22:17:52Z) - CogBench: a large language model walks into a psychology lab [12.981407327149679]
本稿では,7つの認知心理学実験から得られた10の行動指標を含むベンチマークであるCogBenchを紹介する。
本稿では,CagBenchを35大言語モデル(LLM)に適用し,統計的多レベルモデリング手法を用いて解析する。
オープンソースモデルは、プロプライエタリなモデルよりもリスクが高く、コードの微調整は必ずしもLLMの振舞いを促進しない。
論文 参考訳(メタデータ) (2024-02-28T10:43:54Z) - Calibrating Large Language Models with Sample Consistency [76.23956851098598]
本稿では,複数サンプルモデル生成系の分布から信頼度を導出する可能性について,一貫性の3つの尺度を用いて検討する。
その結果、一貫性に基づくキャリブレーション手法は、既存のポストホック手法よりも優れていることがわかった。
種々のLMの特性に合わせて,キャリブレーションに適した整合性指標を選択するための実用的なガイダンスを提供する。
論文 参考訳(メタデータ) (2024-02-21T16:15:20Z) - On the Calibration of Large Language Models and Alignment [63.605099174744865]
信頼性キャリブレーションは、ディープモデルの信頼性を高める重要なツールである。
構築プロセス全体を通して、アライメント言語モデルの校正を体系的に検討する。
我々の研究は、人気のあるLCMが十分に校正されているか、トレーニングプロセスがモデルの校正にどのように影響するかに光を当てています。
論文 参考訳(メタデータ) (2023-11-22T08:57:55Z) - Self-Destructing Models: Increasing the Costs of Harmful Dual Uses of
Foundation Models [103.71308117592963]
本稿ではメタラーニングと逆学習の技法を活用した自己破壊モデルの学習アルゴリズムを提案する。
小規模な実験では、MLACは、BERTスタイルのモデルが性別識別を行うために再目的化されることをほとんど防ぐことができることを示す。
論文 参考訳(メタデータ) (2022-11-27T21:43:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。