Climate Aware Deep Neural Networks (CADNN) for Wind Power Simulation
- URL: http://arxiv.org/abs/2412.12160v1
- Date: Wed, 11 Dec 2024 14:22:52 GMT
- Title: Climate Aware Deep Neural Networks (CADNN) for Wind Power Simulation
- Authors: Ali Forootani, Danial Esmaeili Aliabadi, Daniela Thraen,
- Abstract summary: Wind power forecasting plays a critical role in modern energy systems, facilitating the integration of renewable energy sources into the power grid.
This paper proposes the use of Deep Neural Network (DNN)-based predictive models that leverage climate variables to improve the accuracy of wind power simulations.
- Score: 0.7783262415147654
- License:
- Abstract: Wind power forecasting plays a critical role in modern energy systems, facilitating the integration of renewable energy sources into the power grid. Accurate prediction of wind energy output is essential for managing the inherent intermittency of wind power, optimizing energy dispatch, and ensuring grid stability. This paper proposes the use of Deep Neural Network (DNN)-based predictive models that leverage climate datasets, including wind speed, atmospheric pressure, temperature, and other meteorological variables, to improve the accuracy of wind power simulations. In particular, we focus on the Coupled Model Intercomparison Project (CMIP) datasets, which provide climate projections, as inputs for training the DNN models. These models aim to capture the complex nonlinear relationships between the CMIP-based climate data and actual wind power generation at wind farms located in Germany. Our study compares various DNN architectures, specifically Multilayer Perceptron (MLP), Long Short-Term Memory (LSTM) networks, and Transformer-enhanced LSTM models, to identify the best configuration among these architectures for climate-aware wind power simulation. The implementation of this framework involves the development of a Python package (CADNN) designed to support multiple tasks, including statistical analysis of the climate data, data visualization, preprocessing, DNN training, and performance evaluation. We demonstrate that the DNN models, when integrated with climate data, significantly enhance forecasting accuracy. This climate-aware approach offers a deeper understanding of the time-dependent climate patterns that influence wind power generation, providing more accurate predictions and making it adaptable to other geographical regions.
Related papers
- Applying Ensemble Models based on Graph Neural Network and Reinforcement Learning for Wind Power Forecasting [1.4710752403175422]
We propose an ensemble model based on graph neural networks and reinforcement learning (EMGRL) for Wind Power Forecasting (WPF)
Our approach includes: (1) applying graph neural networks to capture the time-series data from neighboring wind farms relevant to the target wind farm; (2) establishing a general state embedding that integrates the target wind farm's data with the historical performance of base models on the target wind farm; and (3) ensembling and leveraging the advantages of all base models through an actor-critic reinforcement learning framework for WPF.
arXiv Detail & Related papers (2025-01-28T00:12:26Z) - Enhanced Photovoltaic Power Forecasting: An iTransformer and LSTM-Based Model Integrating Temporal and Covariate Interactions [16.705621552594643]
Existing models often struggle with capturing the complex relationships between target variables and covariates.
We propose a novel model architecture that leverages the iTransformer for feature extraction from target variables.
A cross-attention mechanism is integrated to fuse the outputs of both models, followed by a Kolmogorov-Arnold network mapping.
Results demonstrate that the proposed model effectively capture seasonal variations in PV power generation and improve forecasting accuracy.
arXiv Detail & Related papers (2024-12-03T09:16:13Z) - Deep Learning for Weather Forecasting: A CNN-LSTM Hybrid Model for Predicting Historical Temperature Data [7.559331742876793]
This study introduces a hybrid model combining Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks to predict historical temperature data.
CNNs are utilized for spatial feature extraction, while LSTMs handle temporal dependencies, resulting in significantly improved prediction accuracy and stability.
arXiv Detail & Related papers (2024-10-19T03:38:53Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
Energy forecasting aims to minimize the cost of subsequent tasks such as power grid dispatch.
In this paper, we collected large-scale load datasets and released a new renewable energy dataset.
We conducted extensive experiments with 21 forecasting methods in these energy datasets at different levels under 11 evaluation metrics.
arXiv Detail & Related papers (2023-07-14T06:50:02Z) - Long-term Wind Power Forecasting with Hierarchical Spatial-Temporal
Transformer [112.12271800369741]
Wind power is attracting increasing attention around the world due to its renewable, pollution-free, and other advantages.
Accurate wind power forecasting (WPF) can effectively reduce power fluctuations in power system operations.
Existing methods are mainly designed for short-term predictions and lack effective spatial-temporal feature augmentation.
arXiv Detail & Related papers (2023-05-30T04:03:15Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaX is a deep learning model for weather and climate science.
It can be pre-trained with a self-supervised learning objective on climate datasets.
It can be fine-tuned to address a breadth of climate and weather tasks.
arXiv Detail & Related papers (2023-01-24T23:19:01Z) - A Concurrent CNN-RNN Approach for Multi-Step Wind Power Forecasting [0.0]
Wind power forecasting helps with the planning for the power systems by contributing to having a higher level of certainty in decision-making.
One approach to remedy this challenge is to utilize weather information from multiple points across a geographical grid to obtain a holistic view of the wind patterns, along with temporal information from the previous power outputs of the wind farms.
Our proposed CNN-RNN architecture combines convolutional neural networks (CNNs) and recurrent neural networks (RNNs) to extract spatial and temporal information from multi-dimensional input data to make day-ahead predictions.
arXiv Detail & Related papers (2023-01-02T15:31:16Z) - Modeling Wind Turbine Performance and Wake Interactions with Machine
Learning [0.0]
Different machine learning (ML) models are trained on SCADA and meteorological data collected at an onshore wind farm.
ML methods for data quality control and pre-processing are applied to the data set under investigation.
A hybrid model is found to achieve high accuracy for modeling wind turbine power capture.
arXiv Detail & Related papers (2022-12-02T23:07:05Z) - Deep Learning Based Cloud Cover Parameterization for ICON [55.49957005291674]
We train NN based cloud cover parameterizations with coarse-grained data based on realistic regional and global ICON simulations.
Globally trained NNs can reproduce sub-grid scale cloud cover of the regional simulation.
We identify an overemphasis on specific humidity and cloud ice as the reason why our column-based NN cannot perfectly generalize from the global to the regional coarse-grained data.
arXiv Detail & Related papers (2021-12-21T16:10:45Z) - DeepClimGAN: A High-Resolution Climate Data Generator [60.59639064716545]
Earth system models (ESMs) are often used to generate future projections of climate change scenarios.
As a compromise, emulators are substantially less expensive but may not have all of the complexity of an ESM.
Here we demonstrate the use of a conditional generative adversarial network (GAN) to act as an ESM emulator.
arXiv Detail & Related papers (2020-11-23T20:13:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.